Frontiers in Biology

, Volume 13, Issue 2, pp 79–90 | Cite as

An overview of pyrethroid insecticides

  • Anudurga Gajendiran
  • Jayanthi Abraham



Pesticides are used to control various pests of agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistence. Pyrethroids are synthetic derivates of pyrethrins, which are natural organic insecticides procured from the flowers of Chrysanthemum cinerariaefolium and C. coccineum. Pyrethroids are classified into two groups—class I and class II—based on their toxicity and physical properties. These pyrethroids are now used in many synthetic insecticides and are highly specific against insects; they are generally used against mosquitoes. The prominent site of insecticidal action of pyrethroids is the voltage-sensitive sodium channels.

Methods and Results

Pyrethroids are found to be stable, and they persist in the environment for a long period. This article provides an overview of the different classes, structure, and insecticidal properties of pyrethroid. Furthermore, the toxicity of pyrethroids is also discussed with emphasis on bioremediation to alleviate pollution.


The article focuses on various microorganisms used in the degradation of pyrethroids, the molecular basis of degradation, and the role of carboxylesterase enzymes and genes in the detoxification of pyrethroid.


pyrethrin carboxylesterase enzyme mineralization microbial degradation toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the Management, VIT University, Vellore, Tamil Nadu.


  1. Abraham J, Silambarasan S (2014). Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. Pestic Biochem Physiol, 116: 24–31CrossRefPubMedGoogle Scholar
  2. Abraham J, Silambarasan S (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic Biochem Physiol, 126: 13–21PubMedGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (2003). Toxicological Profile for Pyrethrins and Pyrethroids. US Department of Health and Human Services, pp: 238.Google Scholar
  4. Ali H Y, Aboul-Enein (2004). Chiral Pollutants. John Wiley and Sons, Chichester, UKGoogle Scholar
  5. Bloomquist J R (1993a). Neuroreceptor mechanisms in pyrethroid mode of action and resistance. Rev Pestic Toxic, 2:184–230Google Scholar
  6. Bloomquist J R (1996). Ion channels as targets for insecticides. Annu Rev Entomol, 41(1): 163–190CrossRefPubMedGoogle Scholar
  7. Bryant R, Bite M G (2003). Global Insecticide Directory, 3rd ed. Orpington, Kent UKGoogle Scholar
  8. Agranova Casida J E, Quistad G B (1998). Golden age of insecticide research: past, present, or future? Annu Rev Entomol, 43(1): 1–16CrossRefPubMedGoogle Scholar
  9. Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-ul-Haq M, Han H (2011b). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater, 187(1-3): 433–440CrossRefPubMedGoogle Scholar
  10. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol, 90(4): 1471–1483CrossRefPubMedGoogle Scholar
  11. Chen S, Lin Q, Xiao Y, Deng Y, Chang C, Zhong G, Hu M, Zhang L H (2013). Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS One, 8(9): e75450CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen S, Yang L, Hu M, Liu J (2011c). Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZSS- 01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol, 90(2): 755–767CrossRefPubMedGoogle Scholar
  13. Fishel F M (2005). Pesticide Toxicity Profile: Synthetic Pyrethroid Pesticides. University of Florida, Institute of Food and Agricultural SciencesGoogle Scholar
  14. Gan J, Lee S J, Liu W P, Haver D L, Kabashina J N (2005). Effects On Non-Target Organisms In Terrestrial And Aquatic Environments. In: Leahey JP (Ed.) The Pyrethroid Insecticides, Taylor and Francis, London, UKGoogle Scholar
  15. Garey J, Wolff M S (1998). Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem Biophys Res Commun, 251(3): 855–859CrossRefPubMedGoogle Scholar
  16. Glomot R (1982). Toxicity of deltamethrin to higher vertebrates, Deltamethrin (Monograph). Roussel-Uclaf Research Centre, France, 4: 109–136Google Scholar
  17. Gosselin R E (1984). Clinic Toxicological of Commercial Products, Williams and Wilkins, Baltimore, MD, USAGoogle Scholar
  18. Grant R J, Daniell T J, Betts W B (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol, 92(3): 534–540CrossRefPubMedGoogle Scholar
  19. Guo P, Wang B Z, Hang B J, Li L, Ali S W, He J, Li S P (2009). Pyrethroid degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeter. Biodegr, 63(8): 1107–1112Google Scholar
  20. Halden R U, Tepp S M, Halden B G, Dwyer D F (1999). Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol, 65(8): 3354–3359PubMedPubMedCentralGoogle Scholar
  21. Hosokawa M (2008). Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 13(2): 412–431CrossRefPubMedGoogle Scholar
  22. Kasai S (2004). Role of cytochrome P450 in mechanism of pyrethroid resistance. J Pestic Sci, 29(3): 220–221CrossRefGoogle Scholar
  23. Katsuda Y (1999). Development of and future prospects for pyrethroid chemistry. Pestic Sci, 55(8): 775–782CrossRefGoogle Scholar
  24. Khambay B P S (2002). Pyrethroid insecticides. Pest Outlook, 13 (2):49–54CrossRefGoogle Scholar
  25. Kumar A, Sharma B, Pandey R S (2008). Cypermethrin and lambdacyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem, 34(4): 331–338CrossRefPubMedGoogle Scholar
  26. Kurihara N, Mayamoto J (1998). Chirality in Agrochemicals, John Wiley and Sons, Chichester, UKGoogle Scholar
  27. Laskowski D A (2002). Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol, 174: 49–170PubMedGoogle Scholar
  28. Lawrence L J, Casida J E (1982). Pyrethroid toxicology: mouse intracerebral structure–toxicity relationships. Pestic Biochem Physiol, 18(1): 9–14CrossRefGoogle Scholar
  29. Lee S, Gan J, Kim J S, Kabashima J N, Crowley D E (2004). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem, 23(1): 1–6CrossRefPubMedGoogle Scholar
  30. Lee S H, Smith T J, Knipple D C, Soderlund D M (1999). Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol, 29(2): 185–194CrossRefPubMedGoogle Scholar
  31. Legath J, Neuschl J, Kacmar P, Poracova J, Dudrikova E, Mlynarcikova H, Kovac G, Javorsky P (1992). Clinical signs and mechanism of supermethrin intoxication in sheep. Vet Hum Toxicol, 34(5): 453–455PubMedGoogle Scholar
  32. Li G, Wang K, Liu Y H (2008). Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact, 7(1): 38CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liang WQ, Wang Z Y, Li H, Wu P C, Hu JM, Luo N, Cao L X, Liu Y H (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem, 53 (19): 7415–7420CrossRefPubMedGoogle Scholar
  34. Liu W, Gan J, Schlenk D, Jury W A (2005). Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA, 102(3): 701–706CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lutnicka H, Bogacka T, Wolska L (1999). Degradation of pyrethroids in an aquatic ecosystem model. Water Res, 33(16): 3441–3446CrossRefGoogle Scholar
  36. Maloney S E, Maule A, Smith A R W (1988). Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol, 54(11): 2874–2876PubMedPubMedCentralGoogle Scholar
  37. Maloney S E, Maule A, Smith A R W (1993). Purification and preliminary characterization of permethrinase from a pyrethroidtransforming strain of Bacillus cereus. Appl Environ Microbiol, 59 (7): 2007–2013PubMedPubMedCentralGoogle Scholar
  38. Mueller-Beilsehmidt D (1990). Toxicology and Environmental fate of synthetic pyrethroids. J Pestic Reform, 10(3): 32–37Google Scholar
  39. Narahashi T (1992). Nerve membrane Na + channels as targets of insecticides. Trends Pharmacol Sci, 13(6): 236–241PubMedGoogle Scholar
  40. Narahashi T (1996). Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol, 79(1): 1–14CrossRefPubMedGoogle Scholar
  41. Naumann K (1998). Research into fluorinated pyrethroid alcohols: an episode in the history of pyrethroid discovery. Pestic Sci, 52(1): 3–20CrossRefGoogle Scholar
  42. Ross M K, Borazjani A, Edwards C C, Potter P M (2006). Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol, 71(5): 657–669CrossRefPubMedGoogle Scholar
  43. Ruan Z, Zhai Y, Song J, Shi Y, Li K, Zhao B, Yan Y (2013). Molecular cloning and characterization of a newly isolated pyrethroiddegrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One, 8(10): e77329CrossRefPubMedPubMedCentralGoogle Scholar
  44. Saha S, Kaviraj A (2008). Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bull Environ Contam Toxicol, 80(1): 49–52CrossRefPubMedGoogle Scholar
  45. Saikia N, Gopal M (2004). Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem, 52(5): 1220–1223CrossRefPubMedGoogle Scholar
  46. Sakata S, Mikami N, Yamada H (1992). Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci, 17(3): 181–189CrossRefGoogle Scholar
  47. Shukla Y, Yadav A, Arora A (2002). Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett, 182(1): 33–41CrossRefPubMedGoogle Scholar
  48. Soderlun D M, Lee S H (2001). Point mutations in homology domain II modify the sensitivity of rat Nav1.8 sodium channels to the pyrethroid insecticide cismethrin. Neurotoxicology, 22(6): 755–765CrossRefPubMedGoogle Scholar
  49. Soderlund D M (1997). Molecular mechanisms of insecticide resistance. In: Sjut, V. (Ed.), Molecular Mechanisms of Resistance to Agrochemicals. Springer, Berlin 21–56Google Scholar
  50. Soderlund D M, Bloomquist J R (1989). Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol, 34(1): 77–96CrossRefPubMedGoogle Scholar
  51. Soderlund D M, Clark J M, Sheets L P, Mullin L S, Piccirillo V J, Sargent D, Stevens J T, Weiner M L (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1): 3–59CrossRefPubMedGoogle Scholar
  52. Soderlund D M, Knipple D C (1999). Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Ann Entomol Soc Am, 92(6): 909–915CrossRefGoogle Scholar
  53. Sogorb M A, Vilanova E (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett, 128(1-3): 215–228CrossRefPubMedGoogle Scholar
  54. Stok J E, Huang H, Jones P D, Wheelock C E, Morisseau C, Hammock B D (2004). Identification, expression, and purification of a pyrethroidhydrolyzing carboxylesterase from mouse liver microsomes. J Biol Chem, 279(28): 29863–29869CrossRefPubMedGoogle Scholar
  55. Tallur P N, Megadi V B, Ninnekar H Z (2008). Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation, 19 (1): 77–82CrossRefPubMedGoogle Scholar
  56. Valentine W M (1990). Toxicology of selected pesticides, drugs, and chemicals. Pyrethrin and pyrethroid insecticides. Vet Clin North Am Small Anim Pract, 20(2): 375–382CrossRefPubMedGoogle Scholar
  57. Valles S M, Dong K, Brenner R J (2000). Mechanism responsible for cypermethrin resistance in a strain of German cockroach germanica. Pestic Biochem Physiol, 66(3): 195–205CrossRefGoogle Scholar
  58. Vijverberg H P M, van den Bercken J (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol, 21(2): 105–126CrossRefPubMedGoogle Scholar
  59. Wang B Z, Guo P, Hang B J, Li L, He J, Li S P (2009). Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol, 75(17): 5496–5500CrossRefPubMedPubMedCentralGoogle Scholar
  60. WHO (1989). Task Group on Environmental Health Criteria for Cypermethrin. Environmental Health Criteria 82.Google Scholar
  61. Geneva, WHO WHO (1990). Permethrin. In: Environmental Health Criteria, vol. 94.Google Scholar
  62. WHO, Geneva Wu P C, Liu Y H, Wang Z Y, Zhang X Y, Li H, Liang WQ, Luo N, Hu J M, Lu J Q, Luan T G, Cao L X (2006). Molecular cloning, purification, and biochemical characterization of a novel pyrethroidhydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem, 54(3): 836–842CrossRefGoogle Scholar
  63. Xu Y X, Sun J Q, Li X H, Li S P, Chen Y (2007). [Study on cooperating degradation of cypermethrin and 3-phenoxybenzoic acid by two bacteria strains]. Wei Sheng Wu Xue Bao, 47(5): 834–837PubMedGoogle Scholar
  64. Yang Z H, Mishimura M, Nishimura K, Kuroda S, Fujita T (1987). Quantitative structure–activity studies of pyrethroids. Ch.12: physicochemical substituent effects of meta-phenoxybenzyl disubstituted acetates on insecticidal activity. Pestic Biochem Physiol, 29(3): 217–232Google Scholar
  65. Yu F B, Shan S D, Luo L P, Guan L B, Qin H (2013). Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B, 48(3): 198–207CrossRefPubMedGoogle Scholar
  66. Yu Y, Fan D (2003). Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol, 70(2): 367–371CrossRefPubMedGoogle Scholar
  67. Zerba E N (1999). Susceptibility and resistance to insecticides of Chagas disease vectors. Medicina (B Aires), 59(Suppl 2): 41–46Google Scholar
  68. Zhai Y, Li K, Song J, Shi Y, Yan Y (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroidhydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater, 221-222: 206–212CrossRefPubMedGoogle Scholar
  69. Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol, 101(10): 3423–3429CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microbial Biotechnology Laboratory, School of Biosciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations