Clastogenic ROS and biophotonics in precancerous diagnosis

Abstract

Background

Cancer is the leading cause of death worldwide. The application of biophotonics for diagnosing precancerous lesions is a major breakthrough in oncology and is associated with the expression of clastogenic bio-markers, such as reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, hydroxyl radicals, and lipid peroxidation products. These ROS are the major sources of ultra-weak biophotons emission; in addition, biophotons are emitted from other biomolecules, which are not associated with ROS. The precancerous phase is diagnosed on the basis of biophoton emission from biomarkers. The type of biophotons emitted depends on the structure of the clastogenic ROS.

Methods

ROS-based emission of ultra-weak photons can be detected using charge coupled device (CCD) cameras and photomultiplier tubes. Furthermore, spectroscopic and microscopic analysis can yield more advanced and definite results.

Results

The frequency and intensity of biophoton emission associated with each ROS provides information regarding the precancerous phase. Previous have attempted to show an association between precancerous growth and biophoton emission; however, their results were not conclusive. In this review, we have addressed multiple aspects of the molecular environment, especially light- matter interactions, to derive a successful theoretical relationship which may have the ability to diaganose the tumor at precancerous stage and to give the solutions of previous failures. This can be a major quantum leap toward precancerous diagnosis therapy.

Conclusion

Biophotonics provides an advanced framework, for easily diagnosing cancer at its preliminary stage. The relationship between biophotons, clastogenic factors, and biochemical reactions in the cellular microenvironment can be understood successfully. The advancement in precancerous diagnosis will improve human health worldwide. The versatility of biophotonics can be used further for novel applications in biology, biochemistry, chemistry and social fields.

This is a preview of subscription content, log in to check access.

References

  1. Alarcon E, Henriquez C, Aspee A, Lissi E A (2007). Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Photochem Photobiol, 83(3): 475–480

    PubMed  Article  CAS  Google Scholar 

  2. Alipour A (2015). Demystifying the Biophoton-Induced Cellular Growth: A Simple Mode. JAMSAT

    Google Scholar 

  3. Anwijk R V (2001). Bio-photons and Bio-communication. J Sci Explor, 15: 183–197

    Google Scholar 

  4. Ballardin M, Barsacchi R, Bodei L, Caraccio N, Cristofani R, DiMrtino F, Ferdeghini M, Kusmic C, Madeddu G, Monzani F, Rossi A M, Sbrana I, Spanu A, Traino C (2004). Oxidative and genotoxic damage after radio-iodine therapy of Graves’ hyperthyroidism. Int J Radiat Biol, 80(3): 209–216

    PubMed  Article  CAS  Google Scholar 

  5. Beckman K B, Saljoughi S, Mashiyama S T, Ames B N (2000). A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Free Radic Biol Med, 29(3-4): 357–367

    PubMed  Article  CAS  Google Scholar 

  6. Benhar M, Engelberg D, Levitzki A (2002). ROS, stress activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Birtic S, Ksas B, Genty B, Mueller M J, Triantaphylides C, Havaux M (2011). Using spontaneous photon emission to image lipid peroxidation pattern in plant tissues. Plant J, 67(6): 1103–1115

    PubMed  Article  CAS  Google Scholar 

  8. Bischof M (2005). Biophotons–The Light in our cells. J Opt Phototh, 1–5

    Google Scholar 

  9. Blake T D, Buckner C A, Cameron D, Lafrenie R M, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309

    Google Scholar 

  10. Bozzone D M (2007). Cancer genetics; Moon Children. Chelsea house, 132 west 31st street, New York

    Google Scholar 

  11. Brizhik L. (2008). Nonlinear mechanism for weak photon emission from biosystems. Indian journal of experimental biology, 46, 353–357

    PubMed  Google Scholar 

  12. Burhans W, Heintz N (2009). The Cell Cycle is a Redox Cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med, 47(9): 1282–1294

    PubMed  Article  CAS  Google Scholar 

  13. Cao Y (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 9(2): 107–115

    PubMed  Article  CAS  Google Scholar 

  14. Chalmers J M, Griffiths P R (2002). Handbook of Vibrational Spectroscopy. Wiley Milan, Italy

    Google Scholar 

  15. Chen P, Zhang L, Zhang F, Liu J T, Bai H, Tang G Q, Lin L (2012). Spectral discrimination between normal and leukemic human sera using delayed luminescence. Biomed Opt Express, 3(8): 1787–1792

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Cheng N, Chytil A, Shyr Y, Joly A, Moses H L (2008). Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular cancer research. MCR, 6: 1521–1533

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Chiarugi P (2003) Reactive oxygen species as mediators of cell adhesion. Ital J Biochem, 52: 28–32

    PubMed  CAS  Google Scholar 

  18. Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Cifra M, Pokornč J, Havelka D, Kučera O (2010). Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems, 100(2): 122–131

    PubMed  Article  CAS  Google Scholar 

  20. Cifra M, Pospisil P (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B, 139: 2–10

    PubMed  Article  CAS  Google Scholar 

  21. Coghlin C, Murray G I (2010). Current and emerging concepts in tumour metastasis. J Pathol, 222(1): 1–15

    PubMed  Article  CAS  Google Scholar 

  22. Cohen S, Popp F A (2003). Biophoton emission of human body. Indian J Exp Biol, 41: 440–445

    PubMed  CAS  Google Scholar 

  23. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214

    PubMed  Article  CAS  Google Scholar 

  24. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214

    PubMed  Article  CAS  Google Scholar 

  25. Creath K, Schwartz G E (2004). Biophoton images of plants: revealing the light within. J Altern Complement Med, 10(1): 23–26

    PubMed  Article  Google Scholar 

  26. Feig D I, Reid T M, Loeb L A (1994). Reactive oxygen species in tumorigenesis. Cancer Res, 54 (7 Suppl): 1890s

    Google Scholar 

  27. Davies K J A (2001). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50(4): 279–289

    Article  Google Scholar 

  28. Day B J, Batinic-Haberle I, Crapo J D (1999). Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med, 26(5-6): 730–736

    PubMed  Article  CAS  Google Scholar 

  29. Day B J, Fridovich I, Crapo J D (1997). Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys, 347(2): 256–262

    PubMed  Article  CAS  Google Scholar 

  30. Degan P, Bonassi S, De Caterina M, Korkina L G, Pinto L, Scopacasa F, Zatterale A, Calzone R, Pagano G (1995). In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis, 16(4): 735–741

    PubMed  Article  CAS  Google Scholar 

  31. Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A (2010). Anisotropic Elastic Network Modeling of Entire Microtubules. Biophys J, 99(7): 2190–2199

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Deshpande N N, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling K K (2002). Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal, 4 (5): 845–854

    PubMed  Article  CAS  Google Scholar 

  33. Dinh T V (2010). Biomedical Photonics Handbook. CRC Press

    Google Scholar 

  34. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med, 32(11): 1102–1115

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. Dotta B T, Buckner C A, Cameron D, Lafrenie R F, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309

    PubMed  CAS  Google Scholar 

  36. Emerit I (1994). Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. F ree Radic Biol Med, 16(1): 99–109

    Article  CAS  Google Scholar 

  37. Emerit I (2007). Clastogenic factors as potential biomarkers of increased superoxide production. B iomark Insights, 2: 429–438

    Google Scholar 

  38. Ferrari M, Quaresima V (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2): 921–935

    PubMed  Article  Google Scholar 

  39. Ferraro P, Wax A, Zalevsky Z (2011). Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. Springer

    Google Scholar 

  40. Floryszak-Wieczorek J, Go’rski Z, Arasimowicz-Jelonek M (2011). Functional imaging of biophoton responses of plants to fungal infection. Eur J Plant Pathol, 130(2): 249–258

    Article  Google Scholar 

  41. Gartel A L, Radhakrishnan S K (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 65(10): 3980–3985

    PubMed  Article  CAS  Google Scholar 

  42. Griendling K K, FitzGerald G A (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108(16): 1912–1916

    PubMed  Article  Google Scholar 

  43. Guo Y, Tan J (2013). A biophotonic sensing method for plant drought stress. Sens Actuators B Chem, 188: 519–524

    Article  CAS  Google Scholar 

  44. Halliwell B, Gutteridge J M C (1985). Free radicals in biology and medicine. J Free Rad Biol Med, 1 (4):331–332

    Article  Google Scholar 

  45. Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144 (5): 646

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  46. Held P (2015). An Introduction to Reactive Oxygen Species; Measurement of ROS in Cells White papers

    Google Scholar 

  47. Hideg E (1993). On the spontaneous ultraweak light emission of plants. J Photochem Photobiol B, 18(2-3): 239–244

    Article  Google Scholar 

  48. Hossu M, Ma L, Zou X, Chen W (2013). Enhancement of biophoton emission of prostate cancer cells by Ag nanoparticles. Cancer Nanotechnol, 4(1-3): 21–26

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem, 10(23): 2495–2505

    PubMed  Article  CAS  Google Scholar 

  50. Kai S (2012). Biophoton: collection of photon-images. Forma, 27: S45–S48

    Google Scholar 

  51. Kamal A H, Komatsu S (2015). Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J Proteome Res, 14(5): 2219–2236

    PubMed  Article  CAS  Google Scholar 

  52. Kamal A H, Komatsu S (2016). Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep, 43(2): 73–89

    PubMed  Article  CAS  Google Scholar 

  53. Kanofsky J R (2011). Measurement of singlet-oxygen in vivo: progress and pitfalls. Photochem Photobiol, 87(1): 14–17

    PubMed  Article  CAS  Google Scholar 

  54. Kasprzak K S (2002). Oxidative DNA and protein damage in metalinduced toxicity and carcinogenesis. Free Radic Biol Med, 32(10): 958–967

    PubMed  Article  CAS  Google Scholar 

  55. Kataoka Y, Cui Y, Yamagata A, Niigaki M, Hirohata T, Oishi N, Watanabe Y (2001). Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem Biophys Res Commun, 285(4): 1007–1011

    PubMed  Article  CAS  Google Scholar 

  56. Klaunig J E, Xu Y, Bachowski S, Jiang J (1997). Free-radical oxygeninduced changes in chemical carcinogenesis. Free Radical Toxicology, 375–400

    Google Scholar 

  57. Klotter J (2010). Light, Cancer and Fritz-Albert Popp

    Google Scholar 

  58. Kobayashi K. (2003). Spontaneous ultraweak photon emission of living organisms—biophotons—phenomena and detection techniques for extracting biological information. Trends in Photohchem. Photobiol, 10: 111–135

    CAS  Google Scholar 

  59. Kobayashi M, Kikuchi D, Okamura H (2009). Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One, 4(7): e6256

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Komatsu S, Kamal A H, Makino T, Hossain Z (2014). Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta, 1844(7): 1208–1218

    PubMed  Article  CAS  Google Scholar 

  61. Kops G J, Dansen T B, Polderman P E, Saarloos I, Wirtz K W, Coffer P J, Huang T T, Bos J L, Medema R H, Burgering B M (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904): 316–321

    PubMed  Article  CAS  Google Scholar 

  62. Larason T C, Bruce S S, Parr A C (1998). NIST Measurement Services: Spectroradiometric Detector Measurements: Part I-Ultraviolet Detectors and Part II-Visible to Near-Infrared Detectors. National Institute of Standards and Technology (USA) Special Publication

    Google Scholar 

  63. Lau A T, Wang Y, Chiu J F (2008). Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem, 104(2): 657–667

    PubMed  Article  CAS  Google Scholar 

  64. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall M D (2012). Irradiation of skin with visible light induces reactive oxygen species and matrixdegrading enzymes. J Invest Dermatol, 132(7): 1901–1907

    PubMed  Article  CAS  Google Scholar 

  65. Lindholm C, Acheva A, Salomaa S (2010). Clastogenic plasma factors: a short overview. Radiat Environ Biophys, 49(2): 133–138

    PubMed  Article  CAS  Google Scholar 

  66. Liu J, Yeo H C, Overvik-Douki E, Hagen T, Doniger S J, Chu D W, Brooks G A, Ames B N (2002). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol B, 89(1): 21–28

    Article  Google Scholar 

  67. Liu Y W, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K (2003). Effects of Reactive oxygen species on cell proliferation and death in HeLa Cells and its MDR1-overexpressing derivative cell line. Biol Pharm Bull, 26(2): 278–281

    PubMed  Article  CAS  Google Scholar 

  68. Lorch S, Lightfoot R, Ohshima H, Virag L, Chen Q, Hertkorn C, Weiss M, Souza J, Ischiropoulos H, Yermilov V, Pignatelli B, Masuda M, Szabo C (2002). Detection of peroxynitrite-induced protein and DNA modifications. Methods Mol Biol, 196: 247–275

    PubMed  CAS  Google Scholar 

  69. Lozneanu E, Sanduloviciu M (2008). Physical Basis Of Biophoton Emission And Intercellular Communication. Rom Rep Phys, 60(3): 885–898

    CAS  Google Scholar 

  70. Maitland K, Wang T D (2013). “Endoscopy,”in Biomedical Technology and Devices Handbook. Taylor and Francis, New York

    Google Scholar 

  71. Marnett L J (2000a). Oxyradicals and DNA damage. Carcinegensis, 21 (3): 361–370

    Article  CAS  Google Scholar 

  72. Mason W T (1999). Fluorescent and Luminescent Probes for Biological Activity, Massachusetts.

    Google Scholar 

  73. Montillet J L, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel J P, Battesti C, Inze D, Van Breusegem F, Triantaphylides C (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol, 138(3): 1516–1526

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Morgan W F (2003). Non-targeted and delayed eVects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res, 159(5): 567–580

    PubMed  CAS  Google Scholar 

  75. Muhammad N, Mohammad R, Kashif M, Liaqat I (2017). The Darkness Brings Light in the Field of Bio-Communication Through Melatonin Production. Advances in Applied Science Research, 8: 50–61

    Google Scholar 

  76. Nelson K K, Melendez J A (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 37(6): 768–784

    PubMed  Article  CAS  Google Scholar 

  77. Norppa H, Bonassi S, Hansteen I L, Hagmar L, Stromberg U, Rossner P, Boffetta P, Lindholm C, Gundy S, Lazutka J, Cebulska-Wasilewska A, Fabianova E, Sram R J, Knudsen L E, Barale R, Fucic A (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res, 600(1-2): 37–45

    PubMed  Article  CAS  Google Scholar 

  78. Ogilby P R (2010). Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev, 39(8): 3181–3209

    PubMed  Article  CAS  Google Scholar 

  79. Owrutsky J C, Li M, Locke B, Hochstrasser R M (1995). Vibrational relaxation of the CO stretch vibration in hemoglobin-CO, myoglobin- CO, and pro-toheme-CO. J Phys Chem, 99(13): 4842–4846

    Article  CAS  Google Scholar 

  80. Atkius P, Paula JD. (2002). Physical Chemistry. W.H. Freeman, New York Chiarugi P (2008) Src redox regulation: there is more than meets the eye. Mol Cell, 26: 329–337

    Google Scholar 

  81. Pang X F (2012). The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems. J Appl Phys, 111 (9):117–134

    Article  CAS  Google Scholar 

  82. Pang X F (1995). A molecular dynamic theory of ultraweak bio-photon emission in the living systems and its properties. Chin J At Mol Phys, 12: 411–420

    CAS  Google Scholar 

  83. Popp F A (2009). Cancer growth and its inhibition in terms of coherence. Electromagn Biol Med, 28(1): 53–60

    PubMed  Article  Google Scholar 

  84. Pospisil P, Prasad A, Rac M (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B, 139: 11–23

    PubMed  Article  CAS  Google Scholar 

  85. Practico D, Lawson J A, Rokach J, Fitzgerald G A (2002). The isoprostanes in biology and medicine. Trends Endocrinol Metab, 12: 243–247

    Article  Google Scholar 

  86. Prasad A, Pospisil P (2011). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J Biophotonics, 4(11-12): 840–849

    PubMed  Article  CAS  Google Scholar 

  87. Prasad A, Pospisil P (2012). Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt, 17(8): 085004

    PubMed  Article  CAS  Google Scholar 

  88. Rahnama M, Tuszynski J A, Bókkon I, Cifra M, Sardar P, Salari V, Majid R (2011). Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci, 10(01): 65–88

    PubMed  Article  Google Scholar 

  89. Rastogi A, Pospisil P (2010). Ultra-weak photon emission as a noninvasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand. Skin Res Tech, 16: 365–370

    Google Scholar 

  90. Rastogi A, Pospisil P (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt, 16 (9): 096005

    PubMed  Article  CAS  Google Scholar 

  91. Rastogi A, Pospisil P (2013). Ultra-weak photon emission as a noninvasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. J Photochem Photobiol B, 123: 59–64

    PubMed  Article  CAS  Google Scholar 

  92. Saar B G, Freudiger CW, Reichman J, Stanley C M, Holtom G R, Xie X S (2010). Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009): 1368–1370

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. Saleh B, Teich M C, Slusher R E (1992). Fundamentals of Photonics. Physics Today, 45 (11): 87–88

    Article  Google Scholar 

  94. Sauermann G, Mei W P, Hoppe U, Stab F (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol, 300: 419–428

    PubMed  Article  CAS  Google Scholar 

  95. Savage L M (2006). On the path toward more useful fluorophores. Biophoton Int, 2: 34–37

    Google Scholar 

  96. Shen X, Bei L, Hu T H, Aryal B (2000). The possible role played by biophotons in the long-range interaction between neutrophil leukocytes

    Google Scholar 

  97. Shukla A, Gulumian M, Hei T K, Kamp D, Rahman QMB, Mossman B T (2003). Multiple roles of oxidants in the pathogenesis of asbestosinduced diseases. Free Radic Biol Med, 34(9): 1117–1129

    CAS  Google Scholar 

  98. Solli D R, Chou J, Jalali B (2008). Amplified wavelength–time transformation for real-time spectroscopy. Nat Photonics, 2(1): 48–51

    Article  CAS  Google Scholar 

  99. Storz P(2005) Reactive oxygen species in tumor progression. Front Biosc, 10, 1881–1896

  100. Suhalim J L, Boik J C, Tromberg B J, Potma E O (2012). The need for speed. J Biophotonics, 5(5-6): 387–395

    PubMed  PubMed Central  Article  Google Scholar 

  101. Tafur J, Van Wijk E P, Van Wijk R, Mills P J (2010). Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg, 28(1): 23–30

    PubMed  PubMed Central  Article  Google Scholar 

  102. Takedaa M, Tanno Y, Kobayashi M, Usa M, Ohuchib N, Satomi S (1998). A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett, 127(1-2): 155–160

    Article  Google Scholar 

  103. Tennenbaum, J (1998–1999). Beyond Molecular Biology The Biophoton Revolution

    Google Scholar 

  104. Tsia K K (2015) Fundamentals, Advances and Applications. CRC Press, Taylor & Francis Group. Understanding of Biophotonics.

    Google Scholar 

  105. Tulah A S, Birch-Machin M A (2013). Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion, 13(5): 444–453

    PubMed  Article  CAS  Google Scholar 

  106. Vafa O, Wade M, Kern S, Beeche M, Pandita T K, Hampton G M, Wahl G M (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell, 9(5): 1031–1044

    PubMed  Article  CAS  Google Scholar 

  107. Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266(1/2): 37–56

    PubMed  Article  CAS  Google Scholar 

  108. Valkoa M, Rhodes C J, Moncol J, Izakovic M, Mazur M (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 160(1): 1–40

    Article  CAS  Google Scholar 

  109. Van Wijk R, Kobayashi M, Van Wijk E P (2006a). Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B, 83(1): 69–76

    PubMed  Article  CAS  Google Scholar 

  110. Van Wijk R, Van Wijk E P, Bajpai R P (2006b). Photocount distribution of photons emitted from three sites of a human body. J Photochem Photobiol B, 84(1): 46–55

    PubMed  Article  CAS  Google Scholar 

  111. VanWijk R, VanWijk E P, Wiegant F A, Ives J (2008). Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol, 46: 273–309

    CAS  Google Scholar 

  112. Vladimirov Y A, Proskurnina V (2009). Free radicals and cell chemiluminescence. Biochemistry (Mosc), 74(13): 1545–1566

    Article  CAS  Google Scholar 

  113. Wang L V, Wu H (2007). Biomedical Optics: Principles and Imaging. Wiley-Interscience

    Google Scholar 

  114. Watts B P, Barnard M, Turrens J F (1995). Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch Biochem Biophys, 317(2): 324–330

    PubMed  Article  CAS  Google Scholar 

  115. Winkler R, Guttenberger H, Klima H (2009). Ultraweak and induced photon emission after wounding of plants. Photochem Photobiol, 85 (4): 962–965

    PubMed  Article  CAS  Google Scholar 

  116. Wiseman H, Halliwell B (1996b). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(Pt 1): 17–29

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Wiseman H, Halliwell B, and the WISEMAN (1996a). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(1): 17–29

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Wright J R, Rumbaugh R C, Colby H D, Miles P R (1979). The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys, 192(2): 344–351

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., Raees, M., Liaqat, I. et al. Clastogenic ROS and biophotonics in precancerous diagnosis. Front. Biol. 13, 103–122 (2018). https://doi.org/10.1007/s11515-018-1488-0

Download citation

Keywords

  • biophotons
  • CCD camera
  • molecular environment
  • oncology
  • precancerous
  • photomultiplier
  • ROS