Frontiers in Biology

, Volume 12, Issue 2, pp 83–93 | Cite as

Tcf1 at the crossroads of CD4+ and CD8+ T cell identity

Review

Abstract

Transcription factors and DNA/histone modification enzymes work in concert to establish and maintain cell identity. CD4+ and CD8+ T cells are key players in cellular immunity with distinct functions. Recent studies offer novel insights into how their identities are established in the thymus and maintained in the periphery during immune responses. During thymic maturation, Thpok, HDAC1 and HDAC2 guard CD4+ T cells from activation of CD8+ cytotoxic genes, and Tcf1 and Lef1 utilize their intrinsic HDAC activity to shut down CD4+ lineage-associated genes in CD8+ T cells. In activated CD4+ T cells, Tcf1 and Lef1 act upstream of the Bcl6-Blimp1 axis to direct differentiation of follicular helper T (Tfh) cells, and prevent diversion of Tfh to IL-17-producing cells. In parallel, T-bet, together with Eomes or Blimp1, ensures proper induction of the cytotoxic program in CD8+ effectors elicited by acute infection, and prevents generation of pathogenic, IL-17-producing CD8+ effector T cells. Antigen persistence due to chronic viral infection leads to CD8+ T cell exhaustion. A portion of exhausted CD8+ T cells has the capacity to activate the Tfh program in a Tcf1-dependent manner. Those Tfh-like CD8+ Tcells exhibit enhanced proliferative capacity in response to PD-1 blockage therapy and are more effective in curtailing viral replication. Thus, dissecting the molecular aspects of T cell identity, during development and immune responses, may lead to new therapies for treating autoimmunity, tumors, and persistent infections.

Keywords

Tcf1 Lef1 HDAC CD4+ T cells CD8+ T cells cell identity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Farrah C. Phillips for contributing to data in Fig. 2. J.A.G. is a recipient of the University of Iowa Presidential Graduate Research Fellowship and the Ballard and Seashore Dissertation Fellowship. H.-H. X. is supported by grants from the NIH (AI112579, AI115149, AI119160, and AI121080) and the US Department of Veteran Affairs (I01 BX002903).

References

  1. Banga R, Procopio F A, Noto A, Pollakis G, Cavassini M, Ohmiti K, Corpataux J M, de Leval L, Pantaleo G, Perreau M (2016). PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med, 22(7): 754–761CrossRefPubMedGoogle Scholar
  2. Boucheron N, Tschismarov R, Goschl L, Moser M A, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser F P, Müller L, Hassan H, Bennett K L, Colinge J, Schreiner W, Egawa T, Taniuchi I, Matthias P, Seiser C, Ellmeier W (2014). CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol, 15(5): 439–448CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cannarile MA, Lind N A, Rivera R, Sheridan A D, Camfield K A, Wu B B, Cheung K P, Ding Z, Goldrath A W (2006). Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat Immunol, 7(12): 1317–1325CrossRefPubMedGoogle Scholar
  4. Choi Y S, Gullicksrud J A, Xing S, Zeng Z, Shan Q, Li F, Love P E, Peng W, Xue H H, Crotty S (2015). LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol, 16(9): 980–990CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cobaleda C, Jochum W, Busslinger M (2007). Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature, 449(7161): 473–477CrossRefPubMedGoogle Scholar
  6. Collins A, Littman D R, Taniuchi I (2009). RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol, 9(2): 106–115CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crotty S (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity, 41(4): 529–542CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Obaldia M E, Bhandoola A (2015). Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu Rev Immunol, 33(1): 607–642CrossRefPubMedGoogle Scholar
  9. Fukazawa Y, Lum R, Okoye A A, Park H, Matsuda K, Bae J Y, Hagen S I, Shoemaker R, Deleage C, Lucero C, Morcock D, Swanson T, Legasse A W, Axthelm MK, Hesselgesser J, Geleziunas R, Hirsch V M, Edlefsen P T, Piatak M, Estes J D, Lifson J D, Picker L J (2015). B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med, 21(2): 132–139CrossRefPubMedPubMedCentralGoogle Scholar
  10. Germar K, Dose M, Konstantinou T, Zhang J, Wang H, Lobry C, Arnett K L, Blacklow S C, Aifantis I, Aster J C, Gounari F (2011). T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci USA, 108(50): 20060–20065CrossRefPubMedPubMedCentralGoogle Scholar
  11. Giese K, Cox J, Grosschedl R (1992). The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell, 69(1): 185–195CrossRefPubMedGoogle Scholar
  12. Harty J T, Badovinac V P (2008). Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol, 8(2): 107–119CrossRefPubMedGoogle Scholar
  13. Hatzi K, Nance J P, Kroenke MA, Bothwell M, Haddad E K, Melnick A, Crotty S (2015). BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J Exp Med, 212(4): 539–553CrossRefPubMedPubMedCentralGoogle Scholar
  14. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L (2016). Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature, 537(7620): 412–428CrossRefPubMedGoogle Scholar
  15. Im S J, Hashimoto M, Gerner M Y, Lee J, Kissick H T, Burger M C, Shan Q, Hale J S, Lee J, Nasti T H, Sharpe A H, Freeman G J, Germain R N, Nakaya H I, Xue H H, Ahmed R (2016). Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature, 537(7620): 417–421CrossRefPubMedPubMedCentralGoogle Scholar
  16. Intlekofer A M, Banerjee A, Takemoto N, Gordon S M, Dejong C S, Shin H, Hunter C A, Wherry E J, Lindsten T, Reiner S L (2008). Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science, 321(5887): 408–411CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ioannidis V, Beermann F, Clevers H, Held W (2001). The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol, 2(8): 691–697CrossRefPubMedGoogle Scholar
  18. Ji Y, Pos Z, Rao M, Klebanoff C A, Yu Z, Sukumar M, Reger R N, Palmer D C, Borman Z A, Muranski P, Wang E, Schrump D S, Marincola F M, Restifo N P, Gattinoni L (2011). Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol, 12(12): 1230–1237CrossRefPubMedPubMedCentralGoogle Scholar
  19. Joshi N S, Cui W, Chandele A, Lee H K, Urso D R, Hagman J, Gapin L, Kaech S M (2007). Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity, 27(2): 281–295CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kallies A, Xin A, Belz G T, Nutt S L (2009). Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity, 31(2): 283–295CrossRefPubMedGoogle Scholar
  21. Kee B L (2009). E and ID proteins branch out. Nat Rev Immunol, 9(3): 175–184CrossRefPubMedGoogle Scholar
  22. Khaitan A, Unutmaz D (2011). Revisiting immune exhaustion during HIV infection. Curr HIV/AIDS Rep, 8(1): 4–11CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leong Y A, Chen Y, Ong H S, Wu D, Man K, Deleage C, Minnich M, Meckiff B J, Wei Y, Hou Z, Zotos D, Fenix K A, Atnerkar A, Preston S, Chipman J G, Beilman G J, Allison C C, Sun L, Wang P, Xu J, Toe J G, Lu H K, Tao Y, Palendira U, Dent A L, Landay A L, Pellegrini M, Comerford I, Mc Coll S R, Schacker T W, Long H M, Estes J D, Busslinger M, Belz G T, Lewin S R, Kallies A, Yu D (2016). CXCR5 (+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol, 17(10): 1187–1196CrossRefPubMedGoogle Scholar
  24. Li P, Burke S, Wang J, Chen X, Ortiz M, Lee S C, Lu D, Campos L, Goulding D, Ng B L, Dougan G, Huntly B, Gottgens B, Jenkins N A, Copeland N G, Colucci F, Liu P (2010). Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science, 329(5987): 85–89CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu X, Chen X, Zhong B, Wang A, Wang X, Chu F, Nurieva R I, Yan X, Chen P, van der Flier L G, Nakatsukasa H, Neelapu S S, Chen W, Clevers H, Tian Q, Qi H, Wei L, Dong C (2014). Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature, 507(7493): 513–518CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ma J, Wang R, Fang X, Ding Y, Sun Z (2011). Critical role of TCF-1 in repression of the IL-17 gene. PLoS One, 6(9): e24768CrossRefPubMedPubMedCentralGoogle Scholar
  27. Malhotra N, Narayan K, Cho O H, Sylvia K E, Yin C, Melichar H, Rashighi M, Lefebvre V, Harris J E, Berg L J, Kang J (2013). A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity, 38(4): 681–693CrossRefPubMedGoogle Scholar
  28. Mielke L A, Groom J R, Rankin L C, Seillet C, Masson F, Putoczki T, Belz G T (2013). TCF-1 controls ILC2 and NKp46 + RORt + innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol, 191(8): 4383–4391CrossRefPubMedGoogle Scholar
  29. Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer M H, Nolan G P, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best A J, Knell J, Goldrath A, Jojic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Rao T N, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman N A, Sun J C, Min-Oo G, Kim C C, Lanier L L, Miller J, Brown B, Merad M, Gautier E L, Jakubzick C, Randolph G J, Monach P, Blair D A, Dustin M L, Shinton S A, Hardy R R, Laidlaw D, Collins J, Gazit R, Rossi D J, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S (2013). The transcriptional landscape of alphabeta T cell differentiation. Nat Immunol, 14(6): 619–632CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mittrucker H W, Visekruna A, Huber M (2014). Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp (Warsz), 62(6): 449–458CrossRefGoogle Scholar
  31. Mucida D, Husain M M, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis B S, Huang Y, Lambolez F, Docherty M, Attinger A, Shui J W, Kim G, Lena C J, Sakaguchi S, Miyamoto C, Wang P, Atarashi K, Park Y, Nakayama T, Honda K, Ellmeier W, Kronenberg M, Taniuchi I, Cheroutre H (2013). Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class IIrestricted cytotoxic T lymphocytes. Nat Immunol, 14(3): 281–289CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muroi S, Naoe Y, Miyamoto C, Akiyama K, Ikawa T, Masuda K, Kawamoto H, Taniuchi I (2008). Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat Immunol, 9(10): 1113–1121CrossRefPubMedGoogle Scholar
  33. Natoli G (2010). Maintaining cell identity through global control of genomic organization. Immunity, 33(1): 12–24CrossRefPubMedGoogle Scholar
  34. Paley MA, Kroy D C, Odorizzi P M, Johnnidis J B, Dolfi D V, Barnett B E, Bikoff E K, Robertson E J, Lauer G M, Reiner S L, Wherry E J (2012). Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science, 338(6111): 1220–1225CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pearce E L, Mullen A C, Martins G A, Krawczyk C M, Hutchins A S, Zediak V P, Banica M, Di Cioccio C B, Gross D A, Mao C A, Shen H, Cereb N, Yang S Y, Lindsten T, Rossant J, Hunter C A, Reiner S L (2003). Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science, 302(5647): 1041–1043CrossRefPubMedGoogle Scholar
  36. Quigley M F, Gonzalez V D, Granath A, Andersson J, Sandberg J K (2007). CXCR5 + CCR7-CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles. Eur J Immunol, 37(12): 3352–3362CrossRefPubMedGoogle Scholar
  37. Reis B S, Rogoz A, Costa-Pinto F A, Taniuchi I, Mucida D (2013). Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat Immunol, 14(3): 271–280CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rui J, Liu H, Zhu X, Cui Y, Liu X (2012). Epigenetic silencing of CD8 genes by ThPOK-mediated deacetylation during CD4 T cell differentiation. J Immunol, 189(3): 1380–1390CrossRefPubMedGoogle Scholar
  39. Rutishauser R L, Martins G A, Kalachikov S, Chandele A, Parish I A, Meffre E, Jacob J, Calame K, Kaech S M (2009). Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity, 31(2): 296–308CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shaw L A, Belanger S, Omilusik K D, Cho S, Scott-Browne J P, Nance J P, Goulding J, Lasorella A, Lu L F, Crotty S, Goldrath A W (2016). Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation. Nat Immunol, 17(7): 834–843CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shin H, Blackburn S D, Intlekofer A M, Kao C, Angelosanto J M, Reiner S L, Wherry E J (2009). A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity, 31(2): 309–320CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shy B R, Wu C I, Khramtsova G F, Zhang J Y, Olopade O I, Goss K H, Merrill B J (2013). Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt/beta-catenin signaling. Cell Reports, 4(1): 1–9CrossRefPubMedPubMedCentralGoogle Scholar
  43. Smale S T (2003). The establishment and maintenance of lymphocyte identity through gene silencing. Nat Immunol, 4(7): 607–615CrossRefPubMedGoogle Scholar
  44. Staal F J, Sen JM (2008). The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol, 38: 1788–1794CrossRefPubMedPubMedCentralGoogle Scholar
  45. Steinke F C, Xue H H (2014). From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res, 59(1–3): 45–55CrossRefPubMedGoogle Scholar
  46. Steinke F C, Yu S, Zhou X, He B, Yang W, Zhou B, Kawamoto H, Zhu J, Tan K, Xue H H (2014). TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat Immunol, 15(7): 646–656CrossRefPubMedPubMedCentralGoogle Scholar
  47. Taniuchi I, Ellmeier W (2011). Transcriptional and epigenetic regulation of CD4/CD8 lineage choice. Adv Immunol, 110: 71–110CrossRefPubMedGoogle Scholar
  48. Utzschneider D T, Charmoy M, Chennupati V, Pousse L, Ferreira D P, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D, Pradervand S, Thimme R, Zehn D, Held W (2016). T Cell Factor 1-Expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity, 45(2): 415–427CrossRefPubMedGoogle Scholar
  49. Vacchio M S, Bosselut R (2016). What happens in the thymus does not stay in the thymus: How T cells recycle the CD4+-CD8+ lineage commitment transcriptional circuitry to control their function. J Immunol, 196(12): 4848–4856CrossRefPubMedGoogle Scholar
  50. Vacchio MS, Wang L, Bouladoux N, Carpenter A C, Xiong Y, Williams L C, Wohlfert E, Song K D, Belkaid Y, Love P E, Bosselut R (2014). A ThPOK-LRF transcriptional node maintains the integrity and effector potential of post-thymic CD4+ T cells. Nat Immunol, 15(10): 947–956CrossRefPubMedPubMedCentralGoogle Scholar
  51. Weber B N, Chi A W, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A (2011). A critical role for TCF-1 in T-lineage specification and differentiation. Nature, 476(7358): 63–68CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wherry E J, Kurachi M (2015). Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 15(8): 486–499CrossRefPubMedPubMedCentralGoogle Scholar
  53. Williams M A, Bevan M J (2007). Effector and memory CTL differentiation. Annu Rev Immunol, 25(1): 171–192CrossRefPubMedGoogle Scholar
  54. Wu, T., Shin, H.M., Moseman, E.A., Ji, Y., Huang, B., Harly, C., Sen, J. M., Berg, L.J., Gattinoni, L., McGavern, D.B., Schwartzberg P L (2015). TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep, 12(12): 2099–2110CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xin A, Masson F, Liao Y, Preston S, Guan T, Gloury R, Olshansky M, Lin J X, Li P, Speed T P, Smyth G K, Ernst M, Leonard W J, Pellegrini M, Kaech S M, Nutt S L, Shi W, Belz G T, Kallies A (2016). A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and Tbet. Nat Immunol, 17(4): 422–432CrossRefPubMedGoogle Scholar
  56. Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips F C, Maina P K, Qi H H, Liu C, Zhu J, Pope R M, Musselman C A, Zeng C, Peng W, Xue H H (2016). Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol, 17(6): 695–703CrossRefPubMedPubMedCentralGoogle Scholar
  57. Xu L, Cao Y, Xie Z, Huang Q, Bai Q, Yang X, He R, Hao Y, Wang H, Zhao T, Fan Z, Qin A, Ye J, Zhou X, Ye L, Wu Y (2015). The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat Immunol, 16(9): 991–999CrossRefPubMedGoogle Scholar
  58. Xue H H, Zhao D M (2012). Regulation of mature T cell responses by the Wnt signaling pathway. Ann N Y Acad Sci, 1247(1): 16–33CrossRefPubMedGoogle Scholar
  59. Yang C Y, Best J A, Knell J, Yang E, Sheridan A D, Jesionek A K, Li H S, Rivera R R, Lind K C, D’Cruz L M, Watowich S S, Murre C, Goldrath A W (2011). The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat Immunol, 12(12): 1221–1229CrossRefPubMedGoogle Scholar
  60. Yang J, Lin X, Pan Y, Wang J, Chen P, Huang H, Xue H H, Gao J, Zhong X P (2016). Critical roles of mTOR complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. eLife, 5. pii: e17936PubMedPubMedCentralGoogle Scholar
  61. Yang X J, Seto E (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 9 (3): 206–218CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ye B, Liu X, Li X, Kong H, Tian L, Chen Y (2015). T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis, 6(3): e1694CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yi F, Pereira L, Hoffman J A, Shy B R, Yuen C M, Liu D R, Merrill B J (2011). Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol, 13(7): 762–770CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yu S, Zhou X, Steinke F C, Liu C, Chen S C, Zagorodna O, Jing X, Yokota Y, Meyerholz D K, Mullighan C G, Knudson C M, Zhao D M, Xue H H (2012). The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity, 37(5): 813–826CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yui M A, Rothenberg E V (2014). Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol, 14(8): 529–545CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown S A, Cloer C, Kishton R J, Gao X, Youngblood B, Do M, Li M O, Locasale J W, Rathmell J C, Chi H (2016). mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity, 45(3): 540–554CrossRefPubMedGoogle Scholar
  67. Zhao D M, Yu S, Zhou X, Haring J S, Held W, Badovinac V P, Harty J T, Xue H H (2010). Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol, 184(3): 1191–1199CrossRefPubMedGoogle Scholar
  68. Zhou X, Xue H H (2012). Cutting edge: generation of memory precursors and functional memory CD8+ T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. J Immunol, 189(6): 2722–2726CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhou X, Yu S, Zhao D M, Harty J T, Badovinac V P, Xue H H (2010). Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity, 33(2): 229–240CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhu J, Yamane H, Paul W E (2010). Differentiation of effector CD4 T cell populations. Annu Rev Immunol, 28(1): 445–489CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Microbiology, Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Interdisciplinary Immunology Graduate Program, Carver College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations