Frontiers in Biology

, Volume 12, Issue 2, pp 94–102 | Cite as

Intestinal organoid as an in vitro model in studying host-microbial interactions




Organoid is an in vitro three-dimensional organ-bud that shows realistic microanatomy and physiological relevance. The progress in generating organoids that faithfully recapitulate human in vivo tissue composition has extended organoid applications from being just a basic research tool to a translational platform with a wide range of uses. Study of hostmicrobial interactions relies on model systems to mimic the in vivo infection. Researchers have developed various experimental models in vitro and in vivo to examine the dynamic host-microbial interactions. For some infectious pathogens, model systems are lacking whereas some of the used systems are far from optimal.


In the present work, we will review the brief history and recent findings using organoids for studying hostmicrobial interactions.


A systematic literature search was performed using the PubMed search engine. We also shared our data and research contribution to the field.


we summarize the brief history of 3D organoids. We discuss the feasibility of using organoids in studying hostmicrobial interactions, focusing on the development of intestinal organoids and gastric organoids. We highlight the advantage and challenges of the new experimental models. Further, we discuss the future direction in using organoids in studying hostmicrobial interactions and its potential application in biomedical studies.


In combination with genetic, transcriptome and proteomic profiling, both murine- and human-derived organoids have revealed crucial aspects of development, homeostasis and diseases. Specifically, human organoids from susceptible host will be used to test their responses to pathogens, probiotics, and drugs. Organoid system is an exciting tool for studying infectious disease, microbiome, and therapy.


bacteria colonoids enteroids gastric organoids host-microbial interactions H. pylori inflammation intestinal organoids microbiome organoids tight junctions Salmonella stem-cell differentiation ZO-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the NIDDK 1R01DK105118-01 and the UIC Cancer Center to Jun Sun.


  1. Aoki-Yoshida A, Saito S, Fukiya S, Aoki R, Takayama Y, Suzuki C, Sonoyama K (2016). Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes, 7(3): 421–429CrossRefPubMedGoogle Scholar
  2. Arnold J W, Roach J, Azcarate-Peril M A (2016). Emerging technologies for gut microbiome research. Trends Microbiol, 24(11): 887–901CrossRefPubMedGoogle Scholar
  3. Barrandon Y, Green H (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA, 84(8): 2302–2306CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters P J, Clevers H (2015). In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 148(1): 126–136.e6Google Scholar
  5. Bartfeld S, Clevers H (2015). Organoids as model for infectious diseases: Culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J Vis Exp, 43(105):816–818Google Scholar
  6. Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, MaheMM, Engevik A C, Javier J E, Peek RMJr, Ottemann K, Orian-Rousseau V, Boivin G P, Helmrath M A, Zavros Y (2015). CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog, 11(2): e1004663CrossRefPubMedPubMedCentralGoogle Scholar
  7. Crosnier C, Stamataki D, Lewis J (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet, 7(5): 349–359CrossRefPubMedGoogle Scholar
  8. D’Aiuto L, Di Maio R, Heath B, Raimondi G, Milosevic J, Watson A M, Bamne M, Parks WT, Yang L, Lin B, Miki T, Mich-Basso J D, Arav-Boger R, Sibille E, Sabunciyan S, Yolken R, Nimgaonkar V (2012). Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells. PLoS One, 7(11): e49700CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dedhia P H, Bertaux-Skeirik N, Zavros Y, Spence J R (2016). Organoid models of human gastrointestinal development and disease. Gastroenterology, 150(5): 1098–1112CrossRefPubMedGoogle Scholar
  10. Dingli D, Nowak M A (2006). Cancer biology: infectious tumour cells. Nature, 443(7107): 35–36CrossRefPubMedPubMedCentralGoogle Scholar
  11. Engevik M A, Aihara E, Montrose M H, Shull G E, Hassett D J, Worrell R T (2013). Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol, 305(10): G697–G711CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ettayebi K, Crawford S E, Murakami K, Broughman J R, Karandikar U, Tenge V R, Neill F H, Blutt S E, Zeng X L, Qu L, Kou B, Opekun A R, Burrin D, Graham D Y, Ramani S, Atmar R L, Estes M K (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306): 1387–1393CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fang S B, Schüller S, Phillips A D (2013). Human intestinal in vitro organ culture as a model for investigation of Bacteriae-host interactions. J Exp Clin Med, 5(2): 43–50CrossRefGoogle Scholar
  14. Fatehullah A, Tan S H, Barker N (2016). Organoids as an in vitro model of human development and disease. Nat Cell Biol, 18(3): 246–254CrossRefPubMedGoogle Scholar
  15. Finkbeiner S R, Zeng X L, Utama B, Atmar R L, Shroyer N F, Estes MK (2012). Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio, 3(4): e00159–e12Google Scholar
  16. Forbester J L, Goulding D, et al (2014). Intestinal organoids are a novel system to study Salmonella enterica Serovar Typhimurium interaction with the intestinal epithelial barrier. Immunology, 143: 111–112Google Scholar
  17. Forbester J L, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, Mukhopadhyay S, Dougan G (2015). Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun, 83(7): 2926–2934CrossRefPubMedPubMedCentralGoogle Scholar
  18. Foulke-Abel J, In J, Kovbasnjuk O, Zachos N C, Ettayebi K, Blutt S E, Hyser J M, Zeng X L, Crawford S E, Broughman J R, Estes M K, Donowitz M (2014). Human enteroids as an ex-vivo model of hostpathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood), 239(9): 1124–1134CrossRefGoogle Scholar
  19. Garcez P P, Loiola E C, Madeiro da Costa R, Higa L M, Trindade P, Delvecchio R, Nascimento J M, Brindeiro R, Tanuri A, Rehen S K (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352(6287): 816–818CrossRefPubMedGoogle Scholar
  20. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina M E, Ordóñez-Morán P, Clevers H, Lutolf M P (2016). Designer matrices for intestinal stem cell and organoid culture. Nature, 539(7630): 560–564CrossRefPubMedGoogle Scholar
  21. Harrison R G (1907). Observations on the living developing fiber. Proc Soc Exp Biol Med, 4(1): 140–143CrossRefGoogle Scholar
  22. Heuberger J, Kosel F, Qi J, Grossmann K S, Rajewsky K, Birchmeier W (2014). Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc Natl Acad Sci USA, 111(9): 3472–3477CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hilleman M R (1990). History, precedent, and progress in the development of mammalian cell culture systems for preparing vaccines: safety considerations revisited. J Med Virol, 31(1): 5–12CrossRefPubMedGoogle Scholar
  24. Huang G, Ye S, Zhou X, Liu D, Ying Q L (2015a). Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci, 72(9): 1741–1757CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang J Y, Sweeney E G, Sigal M, Zhang H C, Remington S J, Cantrell M A, Kuo C J, Guillemin K, Amieva M R (2015b). Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe, 18(2): 147–156CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huch M, Koo B K (2015). Modeling mouse and human development using organoid cultures. Development, 142(18): 3113–3125CrossRefPubMedGoogle Scholar
  27. In J G, Foulke-Abel J, Estes MK, Zachos N C, Kovbasnjuk O, Donowitz M (2016). Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol, 13(11): 633–642CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jung P, Sato T, Merlos-Suárez A, Barriga F M, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco M A, Sancho E, Clevers H, Batlle E (2011). Isolation and in vitro expansion of human colonic stem cells. Nat Med, 17(10): 1225–1227CrossRefPubMedGoogle Scholar
  29. Klotz C, Aebischer T, Seeber F (2012). Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying hostparasite interaction. Int J Med Microbiol, 302(4–5): 203–209CrossRefPubMedGoogle Scholar
  30. Kristin W, Weitz J, et al (2016). Organoids as model systems for gastrointestinal diseases: tissue engineering meets. Curr Pathobiol Rep, 4(1): 1–9CrossRefGoogle Scholar
  31. Leslie J L, Huang S, Opp J S, Nagy M S, Kobayashi M, Young V B, Spence J R (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun, 83(1): 138–145CrossRefPubMedGoogle Scholar
  32. Mahe M M, Aihara E, Schumacher M A, Zavros Y, Montrose M H, Helmrath M A, Sato T, Shroyer N F (2013). Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol, 3(4): 217–240CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mahe M M, Sundaram N, Watson C L, Shroyer N F, Helmrath M A (2015). Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J Vis Exp, (97): e52483-e52483Google Scholar
  34. McCracken K W, Catá E M, Crawford C M, Sinagoga K L, Schumacher M, Rockich B E, Tsai Y H, Mayhew C N, Spence J R, Zavros Y, Wells J M (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531): 400–404CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miyoshi H, Stappenbeck T S (2013). In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc, 8(12): 2471–2482CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ng S, Schwartz R E, March S, Galstian A, Gural N, Shan J, Prabhu M, Mota M M, Bhatia S N (2015). Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep, 4(3): 348–359CrossRefGoogle Scholar
  37. Ootani A, Li X, Sangiorgi E, Ho Q T, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman I L, Capecchi MR, Kuo C J (2009). Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med, 15(6): 701–706CrossRefPubMedPubMedCentralGoogle Scholar
  38. Penkert R R, Kalejta R F (2013). Human embryonic stem cell lines model experimental human cytomegalovirus latency. MBio, 4(3): e00298–e13Google Scholar
  39. Roelandt P, Obeid S, Paeshuyse J, Vanhove J, Van Lommel A, Nahmias Y, Nevens F, Neyts J, Verfaillie CM (2012). Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol, 57(2): 246–251CrossRefPubMedGoogle Scholar
  40. Salama N R, Hartung ML, Müller A (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol, 11(6): 385–399CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sato T, Stange D E, Ferrante M, Vries R G, Van Es J H, Van den Brink S, Van Houdt W J, Pronk A, Van Gorp J, Siersema P D, Clevers H (2011a). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141(5): 1762–1772CrossRefPubMedGoogle Scholar
  42. Sato T, van Es J H, Snippert H J, Stange D E, Vries R G, van den Born M, Barker N, Shroyer N F, van de Wetering M, Clevers H (2011b). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330): 415–418CrossRefPubMedGoogle Scholar
  43. Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N, Stange D E, van Es J H, Abo A, Kujala P, Peters P J, Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262–265CrossRefPubMedGoogle Scholar
  44. Saxena K, Blutt S E, Ettayebi K, Zeng X L, Broughman J R, Crawford S E, Karandikar U C, Sastri N P, Conner M E, Opekun A R, Graham D Y, Qureshi W, Sherman V, Foulke-Abel J, In J, Kovbasnjuk O, Zachos N C, Donowitz M, Estes M K (2015). Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol, 90(1): 43–56CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schlaermann P, Toelle B, Berger H, Schmidt S C, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf H J, Meyer T F (2016). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut, 65(2): 202–213CrossRefPubMedGoogle Scholar
  46. Schumacher M A, Feng R, Aihara E, Engevik A C, Montrose M H, Ottemann K M, Zavros Y (2015). Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NFkB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter, 20(1): 19–28CrossRefPubMedGoogle Scholar
  47. Schwank G, Koo B K, Sasselli V, Dekkers J F, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent C K, Nieuwenhuis E E, Beekman J M, Clevers H (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6): 653–658CrossRefPubMedGoogle Scholar
  48. Schwartz R E, Trehan K, Andrus L, Sheahan T P, Ploss A, Duncan S A, Rice C M, Bhatia S N (2012). Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA, 109(7): 2544–2548CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shlomai A, Schwartz R E, Ramanan V, Bhatta A, de Jong Y P, Bhatia S N, Rice C M (2014). Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA, 111(33): 12193–12198CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sigal M, RothenbergME, Logan C Y, Lee J Y, Honaker R W, Cooper R L, Passarelli B, Camorlinga M, Bouley D M, Alvarez G, Nusse R, Torres J, Amieva M R (2015). Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology, 148(7): 1392–404.e21Google Scholar
  51. Spence J R, Mayhew C N, Rankin S A, Kuhar M F, Vallance J E, Tolle K, Hoskins E E, Kalinichenko V V, Wells S I, Zorn A M, Shroyer N F, Wells J M (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332): 105–109CrossRefPubMedGoogle Scholar
  52. Unsworth B R, Lelkes P I (1998). Growing tissues in microgravity. Nat Med, 4(8): 901–907CrossRefPubMedGoogle Scholar
  53. Van Dussen K L, Marinshaw J M, Shaikh N, Miyoshi H, Moon C, Tarr P I, Ciorba M A, Stappenbeck T S (2015). Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut, 64(6): 911–920CrossRefGoogle Scholar
  54. Wang X, Yamamoto Y, Wilson L H, Zhang T, Howitt B E, Farrow M A, Kern F, Ning G, Hong Y, Khor C C, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester F A, Hyams J S, Devers T, Bronson R, Lacy D B, Ho K Y, Crum C P, McKeon F, Xian W (2015). Cloning and variation of ground state intestinal stem cells. Nature, 522(7555): 173–178CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wilson S S, Tocchi A, Holly MK, Parks WC, Smith J G (2015). A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol, 8(2): 352–361CrossRefPubMedGoogle Scholar
  56. Wroblewski L E, Peek R M Jr, Wilson K T (2010). Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev, 23(4): 713–739CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu X, Robotham J M, Lee E, Dalton S, Kneteman N M, Gilbert D M, Tang H (2012). Productive hepatitis C virus infection of stem cellderived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog, 8(4): e1002617CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk A A, Knipping K, Tuysuz N, Dekkers J F, Wang Y, de Jonge J, Sprengers D, van der Laan L J, Beekman J M, Ten Berge D, Metselaar H J, de Jonge H, Koopmans M P, Peppelenbosch M P, Pan Q (2015). Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res, 123: 120–131CrossRefPubMedGoogle Scholar
  59. Yoshida T, Takayama K, Kondoh M, Sakurai F, Tani H, Sakamoto N, Matsuura Y, Mizuguchi H, Yagi K (2011). Use of human hepatocytelike cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun, 416(1–2): 119–124CrossRefPubMedGoogle Scholar
  60. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med, 18(4): 618–623CrossRefPubMedGoogle Scholar
  61. Zhang Y G, Wu S, Xia Y, Sun J (2014). Salmonella-infected cryptderived intestinal organoid culture system for host-bacterial interactions. Physiol Rep, 2(9): e12147CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Gastroenterology and Hepatology, Department of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations