Frontiers in Biology

, Volume 12, Issue 2, pp 139–150 | Cite as

Comparative analysis of metabolic network of pathogens

  • Kumar Gaurav
  • Yasha Hasija
Research Article



Metabolic networks are complex and system of highly connected chemical reactions and hence it needs a system level computational approach to identify the genotype- phenotype relationship. The study of essential genes and reactions and synthetic lethality of genes and reactions plays a crucial role in explaining functional links between genes and gene function predictions.


Flux balance analysis (FBA) has been developed as a powerful method for the in silico analyses of metabolic networks. In this study, we present the comparative analysis of the genomic scale metabolic networks of the four microorganisms i.e. Salmonella typhimurium, Mycobacterium tuberculosis, Staphylococcus aureus, and Helicobacter pylori. The fluxes of all reaction were obtained and the growth rate of the organism was calculated by setting the biomass reaction as the objective function.

Results & Conclusions

The average lethality fraction of all the four organisms studied ranged from 0.2 to 0.6. It was also observed that there are very few metabolites which are highly connected. Those metabolites that are highly connected are supposed to be the ‘global players’ similar to the hub protein in the protein–protein interaction network.


essential genes synthetic lethal genes metabolite connectivity robustness analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Feist and Palsson (2008). The growing scope of applications of genomescale metabolic reconstructions using Escherichia coli. Nature Biotechnol, 226(6): 659–667Google Scholar
  2. Alper H, Jin Y S, Moxley J F, Stephanopoulos G (2005). Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng, 7(3): 155–164CrossRefPubMedGoogle Scholar
  3. Plaimas K, Eils R, König R. Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC systems biology. 2010 May 3;4(1):1CrossRefGoogle Scholar
  4. Chowdhury R, Chowdhury A, Maranas C D (2015). Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models. Metabolites, 5(4): 536–570CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becker S A, Palsson B Ø (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol, 5(1): 8CrossRefPubMedPubMedCentralGoogle Scholar
  6. Schilling C H, CovertMW, Famili I, Church G M, Edwards J S, Palsson B O (2002). Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol, 184(16): 4582–4593CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006). Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet, 38(9): 993–998CrossRefPubMedGoogle Scholar
  8. Edwards J S, Ramakrishna R, Palsson B O (2001). Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng, 77(1): 27–36CrossRefGoogle Scholar
  9. Hamilton J J, Reed J L (2012). Identification of functional differences in metabolic networks using comparative genomics and constraintbased models. PLoS One, 7(4): e34670CrossRefPubMedPubMedCentralGoogle Scholar
  10. Heinemann M, Kummel A, Ruinatscha R, Panke S (2005). In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng, 92(7): 850–64CrossRefPubMedGoogle Scholar
  11. Jamshidi N, Palsson B Ø (2007). Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol, 1(1): 26CrossRefPubMedPubMedCentralGoogle Scholar
  12. Schellenberger J, Que R, Fleming R M, Thiele I, Orth J D, Feist A M, Zielinski D C, Bordbar A, Lewis N E, Rahmanian S, Kang J, Hyduke D R, Palsson B Ø (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 6(9): 1290–1307CrossRefPubMedPubMedCentralGoogle Scholar
  13. Keating S M (2006). SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics, 22(10): 1275–1277CrossRefPubMedGoogle Scholar
  14. Masel J, Siegal ML (2010). Robustness: mechanisms and consequences. Trends Genet, 25(9): 395–403CrossRefGoogle Scholar
  15. Raman K, Chandra N (2009). Flux balance analysis of biological systems: applications and challenges. Brief Bioinform, 10(4): 435–449CrossRefPubMedGoogle Scholar
  16. Kauffman K J, Prakash P, Edwards J S(2003). Advances in flux balance analysis. Curr Opin Biotechnol, 14(5): 491–496CrossRefPubMedGoogle Scholar
  17. McClelland M, Sanderson K E, Spieth J, Clifton S W, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson R K (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413(6858): 852–856CrossRefPubMedGoogle Scholar
  18. Nijman S M B (2011). Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett, 585(1): 1–6CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pratapa A, Balachandran S, Raman K (2015). Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics, 31(20): 3299–3305CrossRefPubMedGoogle Scholar
  20. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (2009). Constraintbased analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol, 3(1): 38CrossRefPubMedPubMedCentralGoogle Scholar
  21. Raman K, Rajagopalan P, Chandra N (2005). Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput Biol, 1(5): e46CrossRefPubMedPubMedCentralGoogle Scholar
  22. Suthers P F, Zomorrodi A, Maranas C D (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol, 5: 301CrossRefPubMedPubMedCentralGoogle Scholar
  23. Thiele I, Hyduke D R, Steeb B, Fankam G, Allen D K, Bazzani S, Charusanti P, Chen F C, Fleming R M, Hsiung C A, De Keersmaecker S C, Liao Y C, Marchal K, Mo M L, Özdemir E, Raghunathan A, Reed J L, Shin S I, Sigurbjörnsdóttir S, Steinmann J, Sudarsan S, Swainston N, Thijs I M, Zengler K, Palsson B O, Adkins J N, Bumann D (2011). A community effort towards a knowledgebase and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol, 5: 8CrossRefPubMedPubMedCentralGoogle Scholar
  24. Thiele I, Vo TD, Price ND, Palsson B Ø (2005). Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol, 187(16): 5818–5830CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyDelhi Technological UniversityDelhiIndia

Personalised recommendations