Frontiers in Biology

, Volume 12, Issue 2, pp 116–123 | Cite as

Cationic antimicrobial peptide: LL-37 and its role in periodontitis

  • Hansa Jain



Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.


In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.


A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”


The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.


The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.


LL-37 antimicrobial peptides cathelicidin periodontitis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



It was self-funded research and the authors reported no conflict of interest. The author would like to thank Mr. Salil Jain and Mrs. Parul Jain.


  1. Al Aboud K, Al Aboud D (2011). Salim Haim and the syndrome that bears his name. Dermatol Online J, 17: 15PubMedGoogle Scholar
  2. Aswath N, Swamikannu B, Ramakrishnan S N, Shanmugam R, Thomas J, Ramanathan A (2014). Heterozygous Ile453Val codon mutation in exon 7, homozygous single nucleotide polymorphisms in intron 2 and 5 of cathepsin C are associated with Haim-Munk syndrome. Eur J Dent, 8(1): 79–84CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bals R, Wang X, Zasloff M, Wilson J M (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broadantimicrobial activity at the airway surface. Proc Natl Acad Sci USA, 95(16): 9541–9546CrossRefPubMedPubMedCentralGoogle Scholar
  4. Band V I, Weiss D S (2015). Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel), 4(1): 18–41CrossRefGoogle Scholar
  5. Bedran T B, Mayer M P, Spolidorio D P, Grenier D (2014). Synergistic anti-inflammatory activity of the antimicrobial peptides human betadefensin- 3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One, 9(9): e106766CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bevec D, Cavalli F, Cavalli V, Bacher G (2008). Use of peptide ll-37 as a therapeutic agent. U.S. Patent Application 12/677, 802, filed September 9Google Scholar
  7. Carlsson G, Andersson M, Putsep K, Garwicz D, Nordenskjold M, Henter J I, Palmblad J, Fadeel B (2006). Kostmann syndrome or infantile genetic agranulocytosis, part one: celebrating 50 years of clinical and basic research on severe congenital neutropenia. Acta Paediatr, 95(12): 1526–1532CrossRefPubMedGoogle Scholar
  8. Chapple I L (2009). Periodontal diagnosis and treatment–where does the future lie? Periodontol 2000, 51(1): 9–24CrossRefPubMedGoogle Scholar
  9. Chung W O, Dommisch H, Yin L, Dale B A (2007). Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des, 13(30): 3073–3083CrossRefPubMedGoogle Scholar
  10. Dahiya P, Kamal R, Gupta R, Bhardwaj R, Chaudhary K, Kaur S (2013). Reactive oxygen species in periodontitis. J Indian Soc Periodontol, 17(4): 411–416CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dale B A (2003). Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000, 30(1): 70–78CrossRefGoogle Scholar
  12. Dale B A, Kimball J R, Krisanaprakornkit S, Roberts F, Robinovitch M, O’ Neal R, Valore E V, Ganz T, Anderson G M, Weinberg A (2001). Localized antimicrobial peptide expression in human gingiva. J Periodontal Res, 36(5): 285–294CrossRefPubMedGoogle Scholar
  13. Davidopoulou S, Diza E, Menexes G, Kalfas S (2012). Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol, 57(7): 865–869CrossRefPubMedGoogle Scholar
  14. De Yang C Q, Chen Q, Schmidt A P, Anderson G M, Wang J M, Wooters J, Oppenheim J J, Chertov O (2000). LL-37, the neutrophil granuleand epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1(FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 192(7): 1069–1074CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eick S, Puklo M, Adamowicz K, Kantyka T, Hiemstra P, Stennicke H, Guentsch A, Schacher B, Eickholz P, Potempa J (2014). Lack of cathelicidin processing in Papillon-Lefèvre syndrome patients reveals essential role of LL-37 inperiodontal homeostasis. Orphanet J Rare Dis, 9(1): 148CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson G H (1997). The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes duringinflammatory disorders. J Biol Chem, 272(24): 15258–15263CrossRefPubMedGoogle Scholar
  17. Godaly G, Ambite I, Svanborg C (2015). Innate immunity and genetic determinants of urinary tract infection susceptibility. See comment in PubMed Commons below. Curr Opin Infect Dis, 28: 88–96Google Scholar
  18. Gorr S U (2012). Antimicrobial peptides in periodontal innate defense. Front Oral Biol, 15: 84–98CrossRefPubMedGoogle Scholar
  19. Gorr S U, Abdolhosseini M (2011). Antimicrobial peptides and periodontal disease. J Clin Periodontol, 38(Suppl. 11): 126–141CrossRefPubMedGoogle Scholar
  20. Greer A, Zenobia C, Darveau R P (2013). Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000, 63(1): 67–79CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gronberg A, Mahlapuu M, Stahle M, Whately-Smith C, Rollman O (2014). Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebocontrolled clinical trial. Wound Repair Regen, 22(5): 613–621CrossRefPubMedGoogle Scholar
  22. Gutner M, Chaushu S, Balter D, Bachrach G (2009). Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis. Infect Immun, 77(12): 5558–5563CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guzman-Rodriguez J J, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087Google Scholar
  24. Guzman-Rodriguez J J, Ochoa-Zarzosa A, Lopez-Gomez R, Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087Google Scholar
  25. Hancock R E, Diamond G (2000). The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 8(9): 402–410CrossRefPubMedGoogle Scholar
  26. Hatipoglu M, Saglam M, Koseoglu S, Koksal E, Keles A, Esen H H (2015). The effectiveness of Crataegus orientalis M Bieber. (Hawthorn) extract administration in preventing alveolar bone loss in rats with experimental periodontitis. PLoS One, 10(6): e0128134CrossRefPubMedPubMedCentralGoogle Scholar
  27. Henzler Wildman K A, Lee D K, Ramamoorthy A (2003). Mechanism of lipid bilayer disruption by human antimicrobial peptide, LL-37. Biochemistry, 42(21): 6545–6558CrossRefPubMedGoogle Scholar
  28. Inomata M, Into T, Murakami Y (2010). Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci, 118(6): 574–581CrossRefPubMedGoogle Scholar
  29. Into T, Inomata M, Shibata K, Murakami Y (2010). Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4- triggered expression of IL-6, IL-8 andCXCL10 in human gingival fibroblasts. Cell Immunol, 264(1): 104–109CrossRefPubMedGoogle Scholar
  30. Jenssen H, Hamill P, Hancock R E (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19(3): 491–511CrossRefPubMedPubMedCentralGoogle Scholar
  31. Khan F Y, Jan S M, Mushtaq M (2012). Papillon-Lefèvre syndrome: Case report and review of the literature. J Indian Soc Periodontol, 16(2): 261–265CrossRefPubMedPubMedCentralGoogle Scholar
  32. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra P S, Vogelmeier C, Gallo R L, Clauss M, Bals R (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest, 111(11): 1665–1672CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koziel J, Karim A Y, Przybyszewska K, Ksiazek M, Rapala-Kozik M, Nguyen K A, Potempa J (2010). Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun, 2(3): 288–293CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leszczynska K, Namiot A, Janmey P A, Bucki R (2010). Modulation of exogenous antibiotic activity by host cathelicidin LL-37. APMIS, 118(11): 830–836CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leszczynska K, Namiot D, Byfield F J, Cruz K, Zendzian-Piotrowska M, Fein D E, Savage P B, Diamond S, McCulloch C A, Janmey P A, Bucki R (2013). Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother, 68(3): 610–618CrossRefPubMedGoogle Scholar
  36. Lombardo Bedran T B, Palomari Spolidorio D, Grenier D (2015). Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy withcathelicidin (LL-37) to reduce the LPSinduced inflammatory response in a three-dimensional co-culture model ofgingival epithelial cells and fibroblasts. Arch Oral Biol, 60(6): 845–853CrossRefPubMedGoogle Scholar
  37. Lopez-Meza J E, Ochoa-Zarzosa A, Barboza-Corona J E, Bideshi D K (2015). Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed Res Int, 367243 doi:10.1155/2015/367243Google Scholar
  38. Mahanonda R, Pichyangkul S (2007). Toll-like receptors and their role in periodontal health and disease. Periodontol 2000, 43(1): 41–55CrossRefPubMedGoogle Scholar
  39. Makeudom A, Kulpawaropas S, Montreekachon P, Khongkhunthian S, Sastraruji T, Pothacharoen P, Kongtawelert P, Krisanaprakornkit S (2014). Positive correlations between hCAP18/LL-37 and chondroitin sulphate levels in chronic periodontitis. J Clin Periodontol, 41(3): 252–261CrossRefPubMedGoogle Scholar
  40. McCrudden M T, Orr D F, Yu Y, Coulter W A, Manning G, Irwin C R, Lundy F T (2013). LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol, 40(10): 933–941CrossRefPubMedGoogle Scholar
  41. Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J (2014). Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res, 476068Google Scholar
  42. Nakamichi Y, Horibe K, Takahashi N, Udagawa N (2014). Roles of cathelicidins in inflammation and bone loss. Odontology, 102(2): 137–146CrossRefPubMedGoogle Scholar
  43. Oh D Y, Koh S J (2015). Cross-regulation of innate and adaptive immunity: a new perspective for the pathogenesis of inflammatory bowel disease. Gut Liver, 9(3): 263–264PubMedPubMedCentralGoogle Scholar
  44. Oudhoff M J, Blaauboer M E, Nazmi K, Scheres N, Bolscher J G, Veerman E C (2010). The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem, 391(5): 541–548CrossRefPubMedGoogle Scholar
  45. Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175CrossRefGoogle Scholar
  46. Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175CrossRefGoogle Scholar
  47. Pahwa P, Lamba A K, Faraz F, Tandon S (2010). Haim-Munk syndrome. J Indian Soc Periodontol, 14(3): 201–203CrossRefPubMedPubMedCentralGoogle Scholar
  48. Panteleev P V, Bolosov I A, Balandin S V, Ovchinnikova T V (2015). Structure and biological functions of β-hairpin antimicrobial Peptides. Acta Naturae, 7: 37–47PubMedPubMedCentralGoogle Scholar
  49. Peschel A, Sahl H G (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4(7): 529–536CrossRefPubMedGoogle Scholar
  50. Puklo M, Guentsch A, Hiemstra P S, Eick S, Potempa J (2008). Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. Oral Microbiol Immunol, 23(4): 328–335CrossRefPubMedPubMedCentralGoogle Scholar
  51. Putsep K, Carlsson G, Boman H G, Andersson M (2002). Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet, 360(9340): 1144–1149CrossRefPubMedGoogle Scholar
  52. Roberts H M, Ling M R, Insall R, Kalna G, Spengler J, Grant M M, Chapple I L (2015). Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol, 42(1): 1–11CrossRefPubMedPubMedCentralGoogle Scholar
  53. Scott M G, Davidson D J, Gold M R, Bowdish D, Hancock R E (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol, 169(7): 3883–3891CrossRefPubMedGoogle Scholar
  54. Shah A F, Tangade P, Agarwal S (2014). Papillon-Lefevre syndrome: Reporting consanguinity as a risk factor. Saudi Dent J, 26(3): 126–131CrossRefPubMedPubMedCentralGoogle Scholar
  55. Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernandez M, Gamonal J (2015). Host response mechanisms in periodontal diseases. J Appl Oral Sci, 23(3): 329–355CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sorensen O E, Clemmensen S N, Dahl S L, Ostergaard O, Heegaard N H, Glenthoj A, Nielsen F C, Borregaard N (2014). Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest, 124(10): 4539–4548CrossRefPubMedPubMedCentralGoogle Scholar
  57. Takeuchi Y, Nagasawa T, Katagiri S, Kitagawara S, Kobayashi H, Koyanagi T, Izumi Y (2012). Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. J Periodontol, 83(6): 766–772CrossRefPubMedGoogle Scholar
  58. Tao R, Jurevic R J, Coulton K K, Tsutsui M T, Roberts M C, Kimball J R, Wells N, Berndt J, Dale B A (2005). Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother, 49(9): 3883–3888CrossRefPubMedPubMedCentralGoogle Scholar
  59. Turkoglu O, Berdeli A, Emingil G, Atilla G (2011). A novel p.S34N mutation of CAMP gene in patients with periodontal disease. Arch Oral Biol, 56(6): 573–579CrossRefPubMedGoogle Scholar
  60. Turkoglu O, Emingil G, Kutukçuler N, Atilla G (2009). Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol, 80(6): 969–976CrossRefPubMedGoogle Scholar
  61. Turkoglu O, Gurkan A, Emingil G, Afacan B, Toz H, Kutukçuler N, Atilla G (2015). Are antimicrobial peptides related to cyclosporine Ainduced gingival overgrowth? Arch Oral Biol, 60(3): 508–515CrossRefPubMedGoogle Scholar
  62. Turkoglu O, Kandiloglu G, Berdeli A, Emingil G, Atilla G (2011). Antimicrobial peptide hCAP-18/LL-37 protein and mRNA expressions in different periodontal diseases. Oral Dis, 17(1): 60–67CrossRefPubMedGoogle Scholar
  63. Turner J, Cho Y, Dinh N N, Waring A J, Lehrer R I (1998). Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother, 42: 2206–2214PubMedPubMedCentralGoogle Scholar
  64. Usher A K, Stockley R A (2013). The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med, 11(1): 241CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ximenez-Fyvie L A, Haffajee A D, Socransky S S (2000). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 27(10): 722–732CrossRefPubMedGoogle Scholar
  66. Yilmaz D, Guncu GN, Kononen E, Baris E, Çaglayan F, Gursoy UK (2015). Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in gingiva of diabetics with periodontitis. Immunobiology, pii: S0171–2985: 30010–3Google Scholar
  67. Zetterstrom R (2002). Kostmann disease-infantile genetic agranulocytosis: historical views and new aspects. Acta Paediatr, 91(12): 1279–1281CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PedodonticsHarsarn Dass Dental CollegeGhaziabadIndia

Personalised recommendations