Advertisement

Frontiers in Biology

, Volume 12, Issue 2, pp 151–162 | Cite as

Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.

  • Madhuchhanda Das
  • Harischandra Sripathy Prakash
  • Monnanda Somaiah Nalini
Research Article
  • 56 Downloads

Abstract

Background

The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances. The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes from Zingiber nimmonii (J. Graham) Dalzell., an endemic medicinal plant species of the ‘Western ghats’, a hotspot location in southern India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.

Methods

Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS). The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic, flavonoid and antioxidant capacities. The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence of bioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.

Results

Endophytic fungi belonging to 11 different taxa were identified. The total phenolic content of the extracts ranged from 10.8±0.7 to 81.6±6.0 mg gallic acid equivalent/g dry extract. Flavonoid was present in eight extracts in the range of 5.2± 0.5 to 24.3±0.9 mg catechin equivalents/g dry extract. Bipolaris specifera, Alternaria tenuissima, Aspergillus terreus, Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity. Characterization of the extracts revealed an array of phenolic acids and flavonoids. N. haematococca and F. chlamydosporum extracts contained quercetin and showed DNA protection ability.

Conclusion

This study is the first comprehensive report on the fungal endophytes from Z. nimmonii, as potential sources of antioxidative and DNA protective compounds. The study indicates that Z. nimmonii endophytes are potential sources of antioxidants over the plant itself.

Keywords

endophytic fungi Zingiber Western Ghats phenolic acids flavonoid DNA protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The University Grants Commission–Major Research Project and the facilities utilized from Institution of Excellence, University of Mysore, are thankfully acknowledged. Thanks to Dr. Shylaja Dharmesh, Senior Scientist, Central Food Technological Research Institute, Mysore for the inputs in the manuscript.

References

  1. Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K (1994). Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  2. Barros L, Ferreira M J, Queirós B, Ferreira C F R, Baptista P (2007). Total phenols, ascorbic acid, ß-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem, 103(2): 413–419CrossRefGoogle Scholar
  3. Bussaban B, Lumyong S, Lumyong P, Mckenzie E H C, Hyde K D (2001). Endophytic fungi from Amomum siamense. Can J Microbiol, 47(10): 943–948CrossRefPubMedGoogle Scholar
  4. Çelik H, Arinç E (2010). Evaluation of the protective effects of quercetin, rutin, resveratrol, naringenin and trolox against idarubicininduced DNA damage. J Pharm Pharm Sci, 13(2): 231–241CrossRefPubMedGoogle Scholar
  5. Cheng MJ, Wu MD, Chen J J, Cheng Y C, Hsieh MT, Hsieh S Y, Yuan G F, Su Y S (2014). Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem Nat Compd, 50(2): 237–241CrossRefGoogle Scholar
  6. Das A K, Singh V (2016). Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem, 201: 298–306CrossRefPubMedGoogle Scholar
  7. Deng C M, Liu S X, Huang C H, Pang J Y, Lin Y C (2013). Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No.GX7–3B) from the South China Sea. Mar Drugs, 11(7): 2616–2624CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duthie S J, Collins A R, Duthie G G, Dobson V L (1997). Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage strand breaks and oxidised pyrimidines in human lymphocytes. Mutat Res, 393(3): 223–231CrossRefPubMedGoogle Scholar
  9. Finose A, Gopalakrishnan V K (2014). Antioxidant potential of Zingiber nimmonii (J. Graham) Dalzell. Int J Pharm PharmSci, 6(6): 50–52Google Scholar
  10. Gamble J S (1928). Flora of the Presidency of Madras. Vol. III, Bishen Singh Mahenra Pal Singh, Dehra Dun, India, pp. 1487–1489Google Scholar
  11. Huang W Y, Cai Y Z, Hyde K D, Corke H, Sun M (2007b). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol, 23(9): 1253–1263CrossRefGoogle Scholar
  12. Huang W Y, Cai Y Z, Xing J, Corke H, Sun M (2007a). A Potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot, 61(1): 14–30CrossRefGoogle Scholar
  13. Jasim B, Anisha C, Rohini S, Kurian J M, Jyothis M, Radhakrishnan E K (2014). Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol, 30(5): 1649–1654CrossRefPubMedGoogle Scholar
  14. Jing P, Zhao S J, Jian W J, Qian B J, Dong Y, Pang J (2012). Quantitative studies on structure- DPPH scavenging activity relationships of food phenolic acids. Molecules, 17(12): 12910–12924CrossRefPubMedGoogle Scholar
  15. Karamac M, Kosiñska A, Pegg R B (2005). Comparison of radicalscavenging activities for selected phenolic acids. Pol J Food NutrSci, 14/55(2): 165–170Google Scholar
  16. Kavitha P G, Kiran A G, Dinesh Raj R, Sabu M, Thomas G (2010). Amplified fragment length polymorphism analyses unravel a striking difference in the intraspecific genetic diversity of four species of four species of genus Zingiber Boehm. from the Western Ghats, South India. Curr Sci, 98(2): 242–246Google Scholar
  17. Lee J C, Kim H R, Kim J, Jang Y S (2002). Antioxidant activity of ethanol extract of the stem of Opuntiaficus-indica var. saboten. J Agric Food Chem, 50(22): 6490–6496CrossRefPubMedGoogle Scholar
  18. Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem, 105(2): 548–554CrossRefGoogle Scholar
  19. Maldonado P D, Rivero-Cruz I, Mata R, Pedraza-Chaverrí J (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem, 53(6): 1996–2001CrossRefPubMedGoogle Scholar
  20. Nalini MS, Sunayana N, Prakash HS (2014). Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodiv, doi:org/10.1155/2014/494213.Google Scholar
  21. Nongalleima K, Dey A, Lokesh D, Singh C B, Thongam B, Sunitibala D H, Indira D S (2013). Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. Int J Pharm Tech Res, 5(2): 301–307Google Scholar
  22. Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2): 351–358CrossRefPubMedGoogle Scholar
  23. Onyema O O, Farombi E O, Emerole G O, Ukoha A I, Onyeze G O (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys, 43(1): 20–24PubMedGoogle Scholar
  24. Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. J Nutr, 44: 307–315Google Scholar
  25. Pérez-Magariño S, Revilla I, González-SanJosé M L, Beltrán S (1999). Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. J Chromatogr A, 847(1–2): 75–81CrossRefPubMedGoogle Scholar
  26. Pizarro J G, Folch J, De La Torre A V, Verdaguer E, Junyent F, Jordan J, Pallas M, Camins A (2009). Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic Res, 43(10): 985–994CrossRefPubMedGoogle Scholar
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Evans C R (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9–10): 1231–1237CrossRefPubMedGoogle Scholar
  28. Sabulal B, Dan M, John J A, Kurup R, Pradeep N S, Valsamma R K, George V (2006). Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry, 67(22): 2469–2473CrossRefPubMedGoogle Scholar
  29. Samaga P V, Rai V R (2016). Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol, 66(1): 229–244CrossRefGoogle Scholar
  30. Schulz B, Guske S, Dammann U, Boyle C (1998). Endophyte host interactions II. Defining symbiosis of the endophyte host interaction. Symbiosis, 25: 213–227Google Scholar
  31. Strobel G, Daisy B (2003). Bio prospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502CrossRefPubMedPubMedCentralGoogle Scholar
  32. Strobel G, Yang X, Sears J, Kramer R, Sidhu R S, Hess W M (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 142(2): 435–440CrossRefPubMedGoogle Scholar
  33. Sun J, Liang F, Bin Y, Li P, Duan C (2007). Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules, 12(3): 679–693CrossRefPubMedGoogle Scholar
  34. Tan R X, Zou W X (2001). Endophytes: a rich source of functional metabolites. Nat Prod Rep, 18(4): 448–459CrossRefPubMedGoogle Scholar
  35. Tejesvi M V, Mahesh B, Nalini M S, Prakash H S, Kini K R, Subbiah V, Shetty H S (2005). Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World J Microbiol Biotechnol, 21(8–9): 1535–1540CrossRefGoogle Scholar
  36. Thannickal V J, Fanburg B L (2000). Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol, 279: L1005–L1028PubMedGoogle Scholar
  37. Tiwari S, Singh S, Pandey P, Saikia S K, Negi A S, Gupta S K, Pandey R, Banerjee S (2014). Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma, 251(5): 1089–1098CrossRefPubMedGoogle Scholar
  38. Tuma D J, Casey C A (2003). Dangerous byproducts of alcohol breakdown—focus on adducts. Alcohol Res Health, 27: 285–290PubMedGoogle Scholar
  39. Wilson D (1995). Fungal endophytes: out of sight but should not be out of mind. Oikos, 68(2): 379–384CrossRefGoogle Scholar
  40. Yashavantha Rao H C, Rakshith D, Satish S (2015). Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Front Biol, 10(6): 528–536CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Madhuchhanda Das
    • 1
  • Harischandra Sripathy Prakash
    • 2
  • Monnanda Somaiah Nalini
    • 1
  1. 1.Department of Studies in BotanyUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.Department of Studies in BiotechnologyUniversity of MysoreManasagangotri, MysoreIndia

Personalised recommendations