Frontiers in Biology

, Volume 11, Issue 5, pp 404–411 | Cite as

Incidence of T315I mutation in BCR/ABL-positive CML and ALL patients

  • Fatemeh Norozi
  • Javad Mohammadi-asl
  • Tina Vosoughi
  • Mohammad Ali Jalali Far
  • Amal Saki Malehi
  • Najmaldin Saki
Research Article
  • 44 Downloads

Abstract

Objectives

Targeted therapy of Philadelphia-positive ALL and CML patients using imatinib (IM) has caused significant changes in treatment course and has increased the survival of patients. A small group of patients show resistance to IM. Acquired mutations in tyrosine kinase domain of BCR-ABL protein are a mechanism for development of resistance. T315I is one of the most common acquired mutations in this domain, which occurs in ATP binding site and inhibits the formation of hydrogen bond with IM. The aim of this study was to evaluate the prevalence of this mutation in BCR/ABL-positive CML and ALL patients.

Methods

To conduct this study, 60 BCR-ABL-positive patients (including 50 CML and 10 ALL patients) who were subject to treatment with IM were selected. After taking the samples, presence of T315I mutation was assessed using ARMS-PCR on cDNA and its polymorphism was evaluated by sequencing.

Results

The results showed that among 60 patients, only three patients had T315I mutation, which was detected using ARMS technique. The three patients bearing mutation were afflicted with CML and no significant association was found between blood parameters with duration of treatment in presence of mutation.

Conclusions

The mutation was found in three CML patients, which indicated lower likelihood and diagnostic value of this mutation in ALL patients. Given the negative direct sequencing results in T315I patients, it can be concluded that ARMS-PCR is a more sensitive technique when the number of cancer cells is low in patients during treatment.

Keywords

BCR-ABL T315I mutation imatinib CML ALL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apperley J F (2007). Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol, 8(11): 1018–1029CrossRefPubMedGoogle Scholar
  2. Bhojwani D, Yang J J, Pui C H (2015). Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am, 62(1): 47–60CrossRefPubMedPubMedCentralGoogle Scholar
  3. Branford S, Melo J V, Hughes T P (2009). Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood, 114(27): 5426–5435CrossRefPubMedGoogle Scholar
  4. Chomel J C, Sorel N, Bonnet M L, Bertrand A, Brizard F, Roy L, Guilhot F, Turhan A G (2010). Extensive analysis of the T315I substitution and detection of additional ABL mutations in progenitors and primitive stem cell compartment in a patient with tyrosine kinase inhibitor-resistant chronic myeloid leukemia. Leuk Lymphoma, 51(11): 2103–2111CrossRefPubMedGoogle Scholar
  5. Donato N J, Wu J Y, Stapley J, Lin H, Arlinghaus R, Aggarwal B B, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004). Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res, 64(2): 672–677CrossRefPubMedGoogle Scholar
  6. Druker B J, Guilhot F, O’Brien S G, Gathmann I, Kantarjian H, Gattermann N, Deininger M W, Silver R T, Goldman J M, Stone R M, Cervantes F, Hochhaus A, Powell B L, Gabrilove J L, Rousselot P, Reiffers J, Cornelissen J J, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen J L, Radich J P, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson R A, and the IRIS Investigators (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med, 355(23): 2408–2417CrossRefPubMedGoogle Scholar
  7. Druker B J, Tamura S, Buchdunger E, Ohno S, Segal G M, Fanning S, Zimmermann J, Lydon N B (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 2(5): 561–566CrossRefPubMedGoogle Scholar
  8. Ernst T, Hoffmann J, Erben P, Hanfstein B, Leitner A, Hehlmann R, Hochhaus A, Müller M C (2008). ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 93(9): 1389–1393CrossRefPubMedGoogle Scholar
  9. Ernst T, La Rosée P, Müller M C, Hochhaus A (2011). BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am, 25(5): 997–1008, v–viCrossRefPubMedGoogle Scholar
  10. Faderl S, Jeha S, Kantarjian H M (2003). The biology and therapy of adult acute lymphoblastic leukemia. Cancer, 98(7): 1337–1354CrossRefPubMedGoogle Scholar
  11. Gorre M E, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao P N, Sawyers C L (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 293(5531): 876–880CrossRefPubMedGoogle Scholar
  12. Hochhaus A, Kreil S, Corbin A S, La Rosüe P, Müller M C, Lahaye T, Hanfstein B, Schoch C, Cross N C, Berger U, Gschaidmeier H, Druker B J, Hehlmann R (2002). Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 16(11): 2190–2196CrossRefPubMedGoogle Scholar
  13. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross N C, Druker B J, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton J H, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman J M (2006). Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, 108(1): 28–37CrossRefPubMedPubMedCentralGoogle Scholar
  14. Iacobucci I, Ferrarini A, Sazzini M, Giacomelli E, Lonetti A, Xumerle L, Ferrari A, Papayannidis C, Malerba G, Luiselli D, Boattini A, Garagnani P, Vitale A, Soverini S, Pane F, Baccarani M, Delledonne M, Martinelli G (2012). Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia. Blood Cancer J, 2(3): e61CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O’Brien S, Ravandi F, Borthakur G, Cortes J (2008). Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood, 112(1): 53–55CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jabbour E, Soverini S (2009). Understanding the role of mutations in therapeutic decision making for chronic myeloid leukemia. Semin Hematol, 46(suppl 3): s22–26CrossRefPubMedGoogle Scholar
  17. Kagita S, Uppalapati S, Jiwatani S, Linga V G, Gundeti S, Nagesh N, Digumarti R (2014). Incidence of Bcr-Abl kinase domain mutations in imatinib refractory chronic myeloid leukemia patients from South India. Tumour Biol, 35(7): 7187–7193CrossRefPubMedGoogle Scholar
  18. Khorashad J S, Kelley T W, Szankasi P, Mason C C, Soverini S, Adrian L T, Eide C A, Zabriskie M S, Lange T, Estrada J C, Pomicter A D, Eiring A M, Kraft I L, Anderson D J, Gu Z, Alikian M, Reid A G, Foroni L, Marin D, Druker B J, O’Hare T, Deininger M W (2013). BCR-ABL1 compound mutations in tyrosine kinase inhibitorresistant CML: frequency and clonal relationships. Blood, 121(3): 489–498CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kimura S, Ando T, Kojima K (2014). Ever-advancing chronic myeloid leukemia treatment. Int J Clin Oncol, 19(1): 3–9CrossRefPubMedGoogle Scholar
  20. La Rosée P, Deininger M W (2010). Resistance to imatinib: mutations and beyond. Semin Hematol, 47(4): 335–343CrossRefPubMedGoogle Scholar
  21. La Starza R, Testoni N, Lafage-Pochitaloff M, Ruggeri D, Ottaviani E, Perla G, Martelli MF, Marynen P, Mecucci C (2002). Complex variant Philadelphia translocations involving the short arm of chromosome 6 in chronic myeloid leukemia. Haematologica, 87(2): 143–147PubMedGoogle Scholar
  22. Maru Y (2012). Molecular biology of chronic myeloid leukemia. Cancer Sci, 103(9): 1601–1610CrossRefPubMedGoogle Scholar
  23. Nicolini F E, Mauro M J, Martinelli G, Kim D W, Soverini S, Müller M C, Hochhaus A, Cortes J, Chuah C, Dufva I H, Apperley J F, Yagasaki F, Pearson J D, Peter S, Sanz Rodriguez C, Preudhomme C, Giles F, Goldman J M, Zhou W (2009). Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood, 114(26): 5271–5278CrossRefPubMedPubMedCentralGoogle Scholar
  24. O’Hare T, Shakespeare W C, Zhu X, Eide C A, Rivera V M, Wang F, Adrian L T, Zhou T, Huang WS, Xu Q, Metcalf C A 3rd, Tyner J W, Loriaux M M, Corbin A S, Wardwell S, Ning Y, Keats J A, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer T K, Dalgarno D C, Deininger M W, Druker B J, Clackson T (2009). AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 16(5): 401–412CrossRefPubMedPubMedCentralGoogle Scholar
  25. Quintás-Cardama A, Cortes J (2008). Therapeutic options against BCRABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res, 14(14): 4392–4399CrossRefPubMedGoogle Scholar
  26. Roche-Lestienne C, Laï J L, Darré S, Facon T, Preudhomme C(2003). A mutation conferring resistance to imatinib at the time of diagnosis of chronic myelogenous leukemia. N Engl J Med, 348(22): 2265–2266CrossRefPubMedGoogle Scholar
  27. Shah N P, Tran C, Lee F Y, Chen P, Norris D, Sawyers C L (2004). Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 305(5682): 399–401CrossRefPubMedGoogle Scholar
  28. Soverini S, Iacobucci I, Baccarani M, Martinelli G (2007). Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica, 92(4): 437–439CrossRefPubMedGoogle Scholar
  29. Tanaka R, Kimura S, Ashihara E, Yoshimura M, Takahashi N, Wakita H, Itoh K, Nishiwaki K, Suzuki K, Nagao R, Yao H, Hayashi Y, Satake S, Hirai H, Sawada K, Ottmann O G, Melo J V, Maekawa T (2011). Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients. Cancer Lett, 312(2): 228–234CrossRefPubMedGoogle Scholar
  30. Weisberg E, Manley P W, Breitenstein W, Brüggen J, Cowan-Jacob S W, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung A L, Mestan J, Daley G Q, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright R D, Gilliland D G, Griffin J D (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 7(2): 129–141CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fatemeh Norozi
    • 1
  • Javad Mohammadi-asl
    • 2
  • Tina Vosoughi
    • 1
  • Mohammad Ali Jalali Far
    • 1
  • Amal Saki Malehi
    • 1
  • Najmaldin Saki
    • 1
  1. 1.Health Research Institute, Thalassemia and Hemoglobinopathy Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Medical GeneticsAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations