Frontiers in Biology

, Volume 11, Issue 5, pp 366–375 | Cite as

Finding neoepitopes in mouse models of personalized cancer immunotherapy

  • Sahar Al Seesi
  • Alok Das Mohapatra
  • Arpita Pawashe
  • Ion I. Mandoiu
  • Fei Duan
Review
  • 75 Downloads

Abstract

Background

Cancer immunotherapy uses one’s own immune system to fight cancerous cells. As immune system is hard-wired to distinguish self and non-self, cancer immunotherapy is predicted to target cancerous cells specifically, therefore is less toxic than chemotherapy and radiation therapy, two major treatments for cancer. Cancer immunologists have spent decades to search for the specific targets in cancerous cells.

Methods

Due to the recent advances in high throughput sequencing and bioinformatics, evidence has merged that the neoantigens in cancerous cells are probably the cancer-specific targets that lead to the destruction of cancer.We will review the transplantable murine tumor models for cancer immunotherapy and the bioinformatics tools used to navigate mouse genome to identify tumor-rejecting neoantigens.

Results

Several groups have independently identified point mutations that can be recognized by T cells of host immune system. It is consistent with the note that the formation of peptide-MHC I-TCR complex is critical to activate T cells. Both anchor residue and TCR-facing residue mutations have been reported. While TCR-facing residue mutations may directly activate specific T cells, anchor residue mutations improve the binding of peptides to MHC I molecules, which increases the presentation of peptides and the T cell activation indirectly.

Conclusions

Our work indicates that the affinity of neoepitopes for MHC I is not a predictor for anti-tumor immune responses in mice. Instead differential agretopic index (DAI), the numerical difference of epitope-MHC I affinities between the mutated and un-mutated sequences is a significant predictor. A similar bioinformatics pipeline has been developed to generate personalized vaccines to treat human ovarian cancer in a Phase I clinical trial.

Keywords

cancer immunotherapy tumor antigens neoantigens neoepitopes differential agretopic index (DAI) RNA-Seq single nucleotide variant (SNV) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Seesi S, Tiagueu Y T, Zelikovsky A, Măndoiu I I (2014). Bootstrapbased differential gene expression analysis for RNA-Seq data with and without replicates. BMC Genomics, 15(8 Suppl 8): S2CrossRefPubMedPubMedCentralGoogle Scholar
  2. Basombrio M A (1970). Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res, 30(10): 2458–262PubMedGoogle Scholar
  3. Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush MR, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M, Bancarz I R, Banerjee S, Barbour S G, Baybayan PA, Benoit VA, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi MChang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims MM, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G D, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent MA, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O’Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, Vandevondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218): 53–59CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berman J N, Chiu P P L, Dellaire G (2014). Preclinical animal models for cancer genomics. In: Dellair G, Berman J N, Arceci R J, eds. Cancer Genomics: from Bench to Personalized Medicine, Elsevier Inc., 110–126Google Scholar
  5. Bielas J H, Loeb K R, Rubin B P, True L D, Loeb L A (2006). From the Cover: Human cancers express a mutator phenotype. Proc Natl Acad Sci USA, 103(48): 18238–18242CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blanchard T, Srivastava P K, Duan F (2013). Vaccines against advanced melanoma. Clin Dermatol, 31(2): 179–190CrossRefPubMedGoogle Scholar
  7. Boland J F, Chung C C, Roberson D, Mitchell J, Zhang X, Im K M, He J, Chanock S J, Yeager M, Dean M (2013). The new sequencer on the block: comparison of Life Technology’s Proton sequencer to an Illumina HiSeq for whole-exome sequencing. Hum Genet, 132(10): 1153–1163CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bolger A M, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boon T, van der Bruggen P (1996). Human tumor antigens recognized by T lymphocytes. J Exp Med, 183(3): 725–729CrossRefPubMedGoogle Scholar
  10. Castle J C, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn A N, Britten C M, Huber C, Türeci O, Sahin U (2012). Exploiting the mutanome for tumor vaccination. Cancer Res, 72(5): 1081–1091CrossRefPubMedGoogle Scholar
  11. Cheon D J, Orsulic S (2011). Mouse models of cancer. Annu Rev Pathol, 6(1): 95–119CrossRefPubMedGoogle Scholar
  12. Dranoff G (2012). Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol, 12(1): 61–66Google Scholar
  13. Duan F, Duitama J, Al Seesi S, Ayres C M, Corcelli S A, Pawashe A P, Blanchard T, McMahon D, Sidney J, Sette A, Baker B M, Mandoiu I I, Srivastava P K (2014). Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med, 211(11): 2231–2248CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duan F, Lin Y, Liu C, Engelhorn ME, Cohen A D, Curran M, Sakaguchi S, Merghoub T, Terzulli S, Wolchok J D, Houghton A N (2009). Immune rejection of mouse tumors expressing mutated self. Cancer Res, 69(8): 3545–3553CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duitama J, Srivastava P K, Măndoiu I I (2012). Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics, 13(2 Suppl 2): S6CrossRefPubMedPubMedCentralGoogle Scholar
  16. Feng J, Meyer C A, Wang Q, Liu J S, Shirley Liu X, Zhang Y (2012). GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28(21): 2782–2788CrossRefPubMedGoogle Scholar
  17. Foley E J (1953). Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res, 13(12): 835–837PubMedGoogle Scholar
  18. Gubin M M, Zhang X, Schuster H, Caron E, Ward J P, Noguchi T, Ivanova Y, Hundal J, Arthur C D, Krebber W J, Mulder G E, Toebes M, Vesely M D, Lam S S, Korman A J, Allison J P, Freeman G J, Sharpe A H, Pearce E L, Schumacher T N, Aebersold R, Rammensee H G, Melief C J, Mardis E R, Gillanders W E, Artyomov M N, Schreiber R D (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515(7528): 577–581CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kim D, Langmead B, Salzberg S L (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12(4): 357–360CrossRefPubMedPubMedCentralGoogle Scholar
  20. Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25CrossRefPubMedPubMedCentralGoogle Scholar
  21. Larsen M V, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1): 424CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li B, Dewey C N (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1): 323CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu J, Blake S J, Smyth MJ, Teng MW (2014). Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology, 3(8): e22CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lundegaard C, Lund O, Nielsen M (2008). Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics, 24(11): 1397–1398CrossRefPubMedGoogle Scholar
  25. Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora J P, Janssens C, Reddehase M J, Lejeune J, Boon T (1989). Structure of the gene of tum-transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell, 58(2): 293–303CrossRefPubMedGoogle Scholar
  26. Matsushita H, Vesely M D, Koboldt D C, Rickert C G, Uppaluri R, Magrini V J, Arthur C D, White J M, Chen Y S, Shea L K, Hundal J, Wendl M C, Demeter R, Wylie T, Allison J P, Smyth M J, Old L J, Mardis E R, Schreiber R D (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 482(7385): 400–404CrossRefPubMedPubMedCentralGoogle Scholar
  27. McGranahan N, Furness A J, Rosenthal R, Ramskov S, Lyngaa R, Saini S K, Jamal-Hanjani M, Wilson G A, Birkbak N J, Hiley C T, Watkins T B, Shafi S, Murugaesu N, Mitter R, Akarca A U, Linares J, Marafioti T, Henry J Y, Van Allen E M, Miao D, Schilling B, Schadendorf D, Garraway L A, Makarov V, Rizvi N A, Snyder A, Hellmann M D, Merghoub T, Wolchok J D, Shukla S A, Wu C J, Peggs K S, Chan T A, Hadrup S R, Quezada S A, Swanton C (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280): 1463–1469CrossRefPubMedPubMedCentralGoogle Scholar
  28. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20(9): 1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  29. Monach P A, Meredith S C, Siegel C T, Schreiber H (1995). A unique tumor antigen produced by a single amino acid substitution. Immunity, 2(1): 45–59CrossRefPubMedGoogle Scholar
  30. Nicolae M, Mangul S, Măndoiu I I, Zelikovsky A (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol, 6(1): 9CrossRefPubMedPubMedCentralGoogle Scholar
  31. Noguchi Y, Chen Y T, Old L J (1994). A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA, 91(8): 3171–3175CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nowell P C (1976). The clonal evolution of tumor cell populations. Science, 194(4260): 23–28CrossRefPubMedGoogle Scholar
  33. Pandey V, Nutter R C, Prediger E (2008). Applied Biosystems SOLiD™ System: Ligation-Based Sequencing. In: Janitz M, ed. Next Generation Genome Sequencing. Wiley-VCH Verlag GmbH & Co. KGaA. p. 29–42CrossRefGoogle Scholar
  34. Prehn R T, Main J M (1957). Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst, 18(6): 769–778PubMedGoogle Scholar
  35. Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 12(3): R22CrossRefPubMedPubMedCentralGoogle Scholar
  36. Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140CrossRefPubMedGoogle Scholar
  37. Schmieder R, Edwards R (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6): 863–864CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schuler M M, Nastke M D, Stevanovikć S (2007). SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol, 409: 75–93CrossRefPubMedGoogle Scholar
  39. Srivastava P K (2015). Neoepitopes of Cancers: Looking Back, Looking Ahead. Cancer Immunol Res, 3(9): 969–977CrossRefPubMedGoogle Scholar
  40. Thomas R K, Nickerson E, Simons J F, Jänne P A, Tengs T, Yuza Y, Garraway L A, LaFramboise T, Lee J C, Shah K, O’Neill K, Sasaki H, Lindeman N, Wong K K, Borras A M, Gutmann E J, Dragnev K H, DeBiasi R, Chen T H, Glatt K A, Greulich H, Desany B, Lubeski C K, Brockman W, Alvarez P, Hutchison S K, Leamon J H, Ronan M T, Turenchalk G S, Egholm M, Sellers WR, Rothberg J M, Meyerson M (2006). Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med, 12(7): 852–855CrossRefPubMedGoogle Scholar
  41. Tian S, Maile R, Collins E J, Frelinger J A (2007). CD8 + T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol, 179(5): 2952–2960CrossRefPubMedGoogle Scholar
  42. Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yadav M, Jhunjhunwala S, Phung Q T, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung T K, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill J R, Delamarre L (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 515(7528): 572–576CrossRefPubMedGoogle Scholar
  44. Yates L R, Campbell P J (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11): 795–806CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sahar Al Seesi
    • 1
    • 2
  • Alok Das Mohapatra
    • 1
  • Arpita Pawashe
    • 1
  • Ion I. Mandoiu
    • 2
  • Fei Duan
    • 1
  1. 1.Department of Immunology and Carole and Ray Neag Comprehensive Cancer CenterUniversity of Connecticut Cancer CenterFarmingtonUSA
  2. 2.Department of Computer Science & EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations