Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology

An Erratum to this article was published on 12 October 2015

Abstract

CRISPR-Cas (Clustered, Regularly Interspaced, Short Palindromic Repeats–CRISPR-associated (Cas)) RNA guided endonuclease has emerged as the most effective and widely used genome editing technology, which has become the most exciting and rapidly advancing research field. Efficient genome editing by the CRISPR-Cas9 system has been demonstrated in many species, and several laboratories have established CRISPR-Cas9 as a screening tool for systematic genetic analysis, similar to shRNA screening. At least three companies have been founded to leverage this technology for therapeutic uses. To facilitate the implementation of this technology, many software tools have been developed to identify guide RNAs that effectively target a desired genomic region. Here, I provide an overview of the technology, focusing on guide RNA design principles, available software tools and their strengths and weaknesses.

This is a preview of subscription content, access via your institution.

References

  1. Bae S, Park J, Kim J S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNAguided endonucleases. Bioinformatics, 30(10): 1473–1475

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. Chen S, Sanjana N E, Zheng K, Shalem O, Lee K, Shi X, Scott D A, Song J, Pan J Q, Weissleder R, Lee H, Zhang F, Sharp P A (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6): 1246–1260

    CAS  Article  PubMed  Google Scholar 

  3. Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1): 132–141

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Chu S W, Noyes M B, Christensen R G, Pierce B G, Zhu L J, Weng Z, Stormo G D, Wolfe S A (2012). Exploring the DNA-recognition potential of homeodomains. Genome Res, 22(10): 1889–1898

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Cradick T J, Qiu P, Lee CM, Fine E J, Bao G (2014). COSMID: AWebbased tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids, 3(12): e214

    Article  Google Scholar 

  7. Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4): 393–394

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 32(12): 1262–1267

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Doudna J A, Charpentier E (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096

    Article  PubMed  Google Scholar 

  10. Enuameh M S, Asriyan Y, Richards A, Christensen R G, Hall V L, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield J A, Basciotta M D, Ou J, McNulty J C, Zhu L J, Celniker S E, Sinha S, Stormo G D, Brodsky M H, Wolfe S A (2013). Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res, 23 (6): 928–940

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121

    CAS  Article  PubMed  Google Scholar 

  12. Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 10(8): 741–743

    CAS  Article  PubMed  Google Scholar 

  13. Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3): 279–284

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O’Connor-Giles K M (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029–1035

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Gupta A, Meng X, Zhu L J, Lawson N D, Wolfe S A (2011). Zinc finger protein-dependent and-independent contributions to the in vivo offtarget activity of zinc finger nucleases. Nucleic Acids Res, 39(1): 381–392

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  16. Heigwer F, Kerr G, BoutrosM(2014). E-CRISP: fast CRISPR target site identification. Nat Methods, 11(2): 122–123

    CAS  Article  PubMed  Google Scholar 

  17. Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170

    CAS  Article  PubMed  Google Scholar 

  18. Hou Z, Zhang Y, Propson N E, Howden S E, Chu L F, Sontheimer E J, Thomson J A (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA, 110(39): 15644–15649

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9): 827–832

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  21. Ikmi A, McKinney S A, Delventhal K M, Gibson M C (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 5: 5486

    CAS  Article  PubMed  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

    CAS  Article  PubMed  Google Scholar 

  23. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNAprogrammed genome editing in human cells. eLife, 2: e00471

    PubMed Central  Article  PubMed  Google Scholar 

  24. Joung J K, Sander J D (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1): 49–55

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. Koike-Yusa H, Li Y, Tan E P, Velasco-Herrera M C, Yusa K (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 32(3): 267–273

    CAS  Article  PubMed  Google Scholar 

  26. Koonin E V, Makarova K S (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 1: 95

    PubMed Central  PubMed  Google Scholar 

  27. Koonin E V, Makarova K S (2013). CRISPR-Cas: evolution of an RNAbased adaptive immunity system in prokaryotes. RNA Biol, 10(5): 679–686

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31(8): 681–683

    CAS  Article  PubMed  Google Scholar 

  29. Lorenz R, Bernhart S H, Höner Zu, Siederdissen C, Tafer H, Flamm C, Stadler P F, Hofacker I L (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6(1): 26

    PubMed Central  Article  PubMed  Google Scholar 

  30. Ma M, Ye A Y, Zheng W, Kong L (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int, 2013: 270805

    PubMed Central  PubMed  Google Scholar 

  31. Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9): 833–838

    CAS  Article  PubMed  Google Scholar 

  32. Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013b). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Meng X, Noyes MB, Zhu L J, Lawson N D, Wolfe S A (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 26(6): 695–701

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Prykhozhij S V, Rajan V, Gaston D, Berman J N (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE, 10(3): e0119372

    Article  Google Scholar 

  35. Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F (2013a). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6): 1380–1389

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F (2013b). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8 (11): 2281–2308

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. Sampson T R, Saroj S D, Llewellyn A C, Tzeng Y L, Weiss D S (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497(7448): 254–257

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  38. Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166): 84–87

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky R A, Zhang K, Cheng L, Ye Z (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15 (1): 12–13

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  40. Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung J K (2014). Dimeric CRISPR RNAguided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6): 569–576

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2): 187–197

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  42. Wang T, Wei J J, Sabatini D M, Lander E S (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166): 80–84

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. Wyman C, Kanaar R (2006). DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 40(1): 363–383

    CAS  Article  PubMed  Google Scholar 

  44. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics

    Google Scholar 

  45. Xu H, Xiao T, Chen C H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu S X (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res: gr.191452.115

    Google Scholar 

  46. Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370–1379

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  47. Zhu L J, Holmes B R, Aronin N, Brodsky M H (2014). CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE, 9(9): e108424

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lihua Julie Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L.J. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front. Biol. 10, 289–296 (2015). https://doi.org/10.1007/s11515-015-1366-y

Download citation

Keywords

  • CRISPR-Cas9
  • genome editing
  • gRNA design
  • off-target analysis
  • gRNA efficacy