Skip to main content

Cytoskeletal changes in diseases of the nervous system

Abstract

The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.

This is a preview of subscription content, access via your institution.

References

  1. Al-Chalabi A, Andersen P M, Nilsson P, Chioza B, Andersson J L, Russ C, Shaw C E, Powell J F, Leigh P N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164

    CAS  PubMed  Google Scholar 

  2. Anderson S A, Volk D W, Lewis D A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119

    CAS  PubMed  Google Scholar 

  3. Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23

    CAS  PubMed  Google Scholar 

  4. Andrieux A, Salin P A, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364

    CAS  PubMed  Google Scholar 

  5. Arber S, Barbayannis F A, Hanser H, Schneider C, Stanyon C A, Bernard O, Caroni P (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809

    CAS  PubMed  Google Scholar 

  6. Armstrong R A, Cairns N J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurode-generative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560

    CAS  PubMed  Google Scholar 

  7. Armstrong R A, Kerty E, Skullerud K, Cairns N J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215

    CAS  PubMed  Google Scholar 

  8. Asbury A K, Gale M K, Cox S C, Baringer J R, Berg B O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247

    CAS  PubMed  Google Scholar 

  9. Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang W W, Jia Z (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80

    CAS  PubMed  Google Scholar 

  10. Baas P W, Ahmad F J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951

    PubMed  Google Scholar 

  11. Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672

    CAS  PubMed  Google Scholar 

  12. Bégou M, Brun P, Bertrand J B, Job D, Schweitzer A, D’Amato T, Saoud M, Andrieux A, Suaud-Chagny M F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697

    PubMed  Google Scholar 

  13. Bégou M, Volle J, Bertrand J B, Brun P, Job D, Schweitzer A, Saoud M, D’Amato T, Andrieux A, Suaud-Chagny M F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39

    PubMed  Google Scholar 

  14. Belichenko P V, Dahlström A (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61

    CAS  PubMed  Google Scholar 

  15. Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265

    PubMed  Google Scholar 

  16. Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville M J, Percy M E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230

    CAS  PubMed  Google Scholar 

  17. Bernhardt R, Matus A (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221

    CAS  PubMed  Google Scholar 

  18. Bishop A L, Hall A (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255

    CAS  PubMed  Google Scholar 

  19. Bloom G S, Vallee R B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531

    CAS  PubMed  Google Scholar 

  20. Bocquet A, Berges R, Frank R, Robert P, Peterson A C, Eyer J (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054

    CAS  PubMed  Google Scholar 

  21. Bosch M, Hayashi Y (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388

    CAS  PubMed  Google Scholar 

  22. Brettschneider J, Petzold A, Süssmuth S D, Ludolph A C, Tumani H (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856

    CAS  PubMed  Google Scholar 

  23. Brun P, Bégou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny M F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73

    CAS  PubMed  Google Scholar 

  24. Brunden K R, Zhang B, Carroll J, Yao Y, Potuzak J S, Hogan A M, Iba M, James M J, Xie S X, Ballatore C, Smith A B 3rd, Lee V M Y, Trojanowski J Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bugyi B, Papp G, Hild G, Lõrinczy D, Nevalainen E M, Lappalainen P, Somogyi B, Nyitrai M (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Caceres A, Banker G, Steward O, Binder L, Payne M (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318

    CAS  PubMed  Google Scholar 

  27. Cairns N J, Lee V M Y, Trojanowski J Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chai X, Förster E, Zhao S, Bock H H, Frotscher M (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing ncofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299

    CAS  PubMed  Google Scholar 

  29. Chen Y, Zheng ZZ, Huang R, Chen K, Song W, Zhao B, Chen X, Yang Y, Yuan L, Shang HF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging 34:1922 e1921–1925.

    Google Scholar 

  30. Clinton SM, Abelson S, Haroutunian V, Davis K, Meador-Woodruff J H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272

    CAS  Google Scholar 

  31. Clinton S M, Haroutunian V, Davis K L, Meador-Woodruff J H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109

    PubMed  Google Scholar 

  32. Cohen R S, Chung S K, Pfaff D W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284

    CAS  PubMed  Google Scholar 

  33. Collard J F, Côté F, Julien J P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64

    CAS  PubMed  Google Scholar 

  34. Côté F, Collard J F, Julien J P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46

    PubMed  Google Scholar 

  35. Cotter D, Wilson S, Roberts E, Kerwin R, Everall I P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323

    CAS  PubMed  Google Scholar 

  36. Daoud H, Dobrzeniecka S, Camu W, Meininger V, Dupre N, Dion PA, Rouleau GA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging 34:1311 e1311–1312.

    Google Scholar 

  37. Dehmelt L, Halpain S (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33

    CAS  PubMed  Google Scholar 

  38. Dent EW, Kalil K (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769

    CAS  PubMed  Google Scholar 

  39. Deo A J, Goldszer I M, Li S, DiBitetto J V, Henteleff R, Sampson A, Lewis D A, Penzes P, Sweet R A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Díez-Guerra F J, Avila J (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422

    PubMed  Google Scholar 

  41. DiProspero N A, Chen E Y, Charles V, Plomann M, Kordower J H, Tagle D A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533

    PubMed  Google Scholar 

  42. Dixit R, Ross J L, Goldman Y E, Holzbaur E L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Dom R, Malfroid M, Baro F (1976). Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68

    CAS  Google Scholar 

  44. Downing K H, Nogales E (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22

    CAS  PubMed  Google Scholar 

  45. Duan W, Guo Y, Jiang H, Yu X, Li C (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9

    CAS  PubMed  Google Scholar 

  46. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794

    CAS  PubMed  Google Scholar 

  47. Edwards D C, Sanders L C, Bokoch GM, Gill G N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259

    CAS  PubMed  Google Scholar 

  48. Ehlers M D, Fung E T, O’Brien R J, Huganir R L (1998). Splice variantspecific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730

    CAS  PubMed  Google Scholar 

  49. Ehlers M D, Tingley W G, Huganir R L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737

    CAS  PubMed  Google Scholar 

  50. Ferri C P, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes P R, Rimmer E, Scazufca M, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117

    PubMed Central  PubMed  Google Scholar 

  51. Figlewicz D A, Krizus A, Martinoli M G, Meininger V, Dib M, Rouleau G A, Julien J P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761

    CAS  PubMed  Google Scholar 

  52. Freiman T M, Eismann-Schweimler J, Frotscher M (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338

    PubMed  Google Scholar 

  53. Fuchs E, Cleveland DW (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519

    CAS  PubMed  Google Scholar 

  54. Fulga T A, Elson-Schwab I, Khurana V, Steinhilb M L, Spires T L, Hyman B T, Feany M B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148

    CAS  PubMed  Google Scholar 

  55. Galloway P G, Mulvihill P, Perry G (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822

    CAS  PubMed  Google Scholar 

  56. Galloway P G, Perry G, Gambetti P (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199

    CAS  PubMed  Google Scholar 

  57. Garey L J, Ong W Y, Patel T S, Kanani M, Davis A, Mortimer A M, Barnes T R, Hirsch S R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453

    CAS  PubMed  Google Scholar 

  58. Ge W W, Wen W, Strong W, Leystra-Lantz C, Strong M J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124

    CAS  PubMed  Google Scholar 

  59. Gibson P H, Tomlinson B E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206

    CAS  PubMed  Google Scholar 

  60. Glantz L A, Lewis D A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73

    CAS  PubMed  Google Scholar 

  61. Glantz L A, Lewis D A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203

    CAS  PubMed  Google Scholar 

  62. Goedert M, Wischik C M, Crowther R A, Walker J E, Klug A (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055

    CAS  PubMed  Google Scholar 

  63. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y C, Zaidi M S, Wisniewski H M (1986a). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089

    CAS  PubMed  Google Scholar 

  64. Grundke-Iqbal I, Iqbal K, Tung Y C, Quinlan M, Wisniewski H M, Binder L I (1986b). Abnormal phosphorylation of the microtubuleassociated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917

    CAS  PubMed  Google Scholar 

  65. Gunning P, O’Neill G, Hardeman E (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35

    CAS  PubMed  Google Scholar 

  66. Haas C A, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802

    CAS  PubMed  Google Scholar 

  67. Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119

    CAS  PubMed  Google Scholar 

  68. Hayashi M L, Choi S Y, Rao B S, Jung H Y, Lee H K, Zhang D, Chattarji S, Kirkwood A, Tonegawa S (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787

    CAS  PubMed  Google Scholar 

  69. Hill J J, Hashimoto T, Lewis D A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566

    CAS  PubMed  Google Scholar 

  70. Hill W D, Lee V M, Hurtig H I, Murray J M, Trojanowski J Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160

    CAS  PubMed  Google Scholar 

  71. Houser C R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204

    CAS  PubMed  Google Scholar 

  72. Hutton M, Lendon C L, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen R C, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon J M, Nowotny P, Che L K, Norton J, Morris J C, Reed L A, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd P R, Hayward N, Kwok J B, Schofield P R, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra B A, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705

    CAS  PubMed  Google Scholar 

  73. Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hubers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt J H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706

    Google Scholar 

  74. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz P A, Wen G Y, Shaikh S S, Wisniewski H M, Alafuzoff I, Winblad B (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426

    CAS  PubMed  Google Scholar 

  75. Ittner LM, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397

    CAS  PubMed  Google Scholar 

  76. Jordanova A, De Jonghe P, Boerkoel C F, Takashima H, De Vriendt E, Ceuterick C, Martin J J, Butler I J, Mancias P, Papasozomenos S Ch, Terespolsky D, Potocki L, Brown C W, Shy M, Rita D A, Tournev I, Kremensky I, Lupski J R, Timmerman V (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597

    CAS  PubMed  Google Scholar 

  77. Ke Y D, Suchowerska A K, van der Hoven J, De Silva D M, Wu C W, van Eersel J, Ittner A, Ittner L M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270

    PubMed Central  PubMed  Google Scholar 

  78. Kim C H, Lisman J E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324

    CAS  PubMed  Google Scholar 

  79. Korobova F, Svitkina T (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen J T, Riess O, Schöls L (2003). Mutation analysis of the neurofilamentMgene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129

    PubMed  Google Scholar 

  81. Kuhn T B, Bamburg J R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249

    CAS  PubMed  Google Scholar 

  82. Lattante S, Le Ber I, Camuzat A, Brice A, Kabashi E (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702

    Google Scholar 

  83. Lavedan C, Buchholtz S, Nussbaum R L, Albin R L, Polymeropoulos M H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61

    CAS  PubMed  Google Scholar 

  84. Lee M K, Marszalek J R, Cleveland D W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988

    CAS  PubMed  Google Scholar 

  85. Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159

    CAS  PubMed  Google Scholar 

  86. Li B, Chohan M O, Grundke-Iqbal I, Iqbal K (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lücking C B, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi B S, Meco G, Denèfle P, Wood NW, Agid Y, Brice A, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567

    PubMed  Google Scholar 

  88. Luo L, Hensch T K, Ackerman L, Barbel S, Jan L Y, Jan Y N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840

    CAS  PubMed  Google Scholar 

  89. Maciver S K, Harrington C R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988

    CAS  PubMed  Google Scholar 

  90. Mahammad S, Murthy S N, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien J P, Kuczmarski E, Opal P, Goldman R D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Manetto V, Sternberger N H, Perry G, Sternberger L A, Gambetti P (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653

    CAS  PubMed  Google Scholar 

  92. Manser E, Leung T, Salihuddin H, Zhao Z S, Lim L (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46

    CAS  PubMed  Google Scholar 

  93. Matus A (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44

    CAS  PubMed  Google Scholar 

  94. Minamide L S, Striegl AM, Boyle J A, Meberg P J, Bamburg J R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636

    CAS  PubMed  Google Scholar 

  95. Mitchison T J, Cramer L P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379

    CAS  PubMed  Google Scholar 

  96. Mockrin S C, Korn E D (1980). Acanthamoeba profilin interacts with Gactin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362

    CAS  PubMed  Google Scholar 

  97. Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady S T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630

    CAS  PubMed  Google Scholar 

  98. Moriwaki A, Lu Y F, Tomizawa K, Matsui H (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865

    CAS  PubMed  Google Scholar 

  99. Morrison BM, Shu IW, Wilcox A L, Gordon JW, Morrison J H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220

    CAS  PubMed  Google Scholar 

  100. Munoz D G, Greene C, Perl D P, Selkoe D J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18

    CAS  PubMed  Google Scholar 

  101. Niebroj-Dobosz I, Dziewulska D, Janik P (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196

    CAS  Google Scholar 

  102. Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266

    CAS  PubMed  Google Scholar 

  103. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246

    CAS  PubMed  Google Scholar 

  104. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112

    CAS  PubMed  Google Scholar 

  105. Ouyang Y, Yang X F, Hu X Y, Erbayat-Altay E, Zeng L H, Lee J M, Wong M (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622

    CAS  PubMed  Google Scholar 

  107. Pavlik L L, Moshkov D A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264

    CAS  PubMed  Google Scholar 

  108. Pérez-Ollé R, López-Toledano M A, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem R K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874

    PubMed  Google Scholar 

  109. Perrot R, Berges R, Bocquet A, Eyer J (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65

    CAS  PubMed  Google Scholar 

  110. Powell K J, Hori S E, Leslie R, Andrieux A, Schellinck H, Thorne M, Robertson G S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835

    PubMed  Google Scholar 

  111. Prineas J W, Ouvrier R A, Wright R G, Walsh J C, McLeod J G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470

    CAS  PubMed  Google Scholar 

  112. Qiang L, Yu W, Andreadis A, Luo M, Baas P W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129

    CAS  PubMed  Google Scholar 

  113. Rao M V, Mohan P S, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna, Espreafico EM, Julien J P, Nixon R A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017

    CAS  PubMed  Google Scholar 

  115. Ren Y, Zhao J, Feng J (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rex C S, Chen L Y, Sharma A, Liu J, Babayan A H, Gall C M, Lynch G (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97

    CAS  PubMed  Google Scholar 

  117. Rossiter J P, Anderson L L, Yang F, Cole G M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346

    CAS  PubMed  Google Scholar 

  118. Rossoll W, Jablonka S, Andreassi C, Kröning A K, Karle K, Monani U R, Sendtner M (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812

    CAS  PubMed  Google Scholar 

  119. Rovelet-Lecrux A, Campion D (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676

    CAS  PubMed  Google Scholar 

  120. Roy S, Zhang B, Lee V M, Trojanowski J Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13

    PubMed  Google Scholar 

  121. Rubio M D, Haroutunian V, Meador-Woodruff J H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Sánchez C, Arellano J I, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra F J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33

    PubMed  Google Scholar 

  123. Sánchez C, Díaz-Nido J, Avila J (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168

    PubMed  Google Scholar 

  124. Scheibel M E, Crandall P H, Scheibel A B (1974). The hippocampaldentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80

    CAS  Google Scholar 

  125. Schevzov G, Curthoys N M, Gunning P W, Fath T (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94

    CAS  PubMed  Google Scholar 

  126. Schmidt M L, Lee V M, Trojanowski J Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522

    CAS  PubMed  Google Scholar 

  127. Schneider A B J, Biernat J, von Bergen M, Mandelkow E M, Mandelkow E M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558

    CAS  PubMed  Google Scholar 

  128. Scott W K, Nance M A, Watts R L, Hubble J P, Koller W C, Lyons K, Pahwa R, Stern M B, Colcher A, Hiner B C, Jankovic J, Ondo W G, Allen F H Jr, Goetz C G, Small G W, Masterman D, Mastaglia F, Laing N G, Stajich J M, Slotterbeck B, Booze M W, Ribble R C, Rampersaud E, West S G, Gibson R A, Middleton L T, Roses A D, Haines J L, Scott B L, Vance J M, Pericak-Vance M A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244

    CAS  PubMed  Google Scholar 

  129. Seitz A, Kojima H, Oiwa K, Mandelkow E M, Song Y H, Mandelkow E (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905

    CAS  PubMed  Google Scholar 

  130. Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, Nakajima M, Hattori E, Mori N, Osumi N, Yoshikawa T (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2-3): 244–252

    PubMed  Google Scholar 

  131. Sousa V L, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sternberger L A, Sternberger N H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neuro-filaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130

    CAS  PubMed  Google Scholar 

  133. Sudo H, Baas P W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778

    CAS  PubMed  Google Scholar 

  134. Sweet R A, Henteleff R A, Zhang W, Sampson A R, Lewis D A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389

    PubMed Central  PubMed  Google Scholar 

  135. Takeuchi H, Kobayashi Y, Yoshihara T, Niwa J, Doyu M, Ohtsuka K, Sobue G (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22

    CAS  PubMed  Google Scholar 

  136. Tiloca C, Ticozzi N, Pensato V, Corrado L, Del Bo R, Bertolin C, Fenoglio C, Gagliardi S, Calini D, Lauria G, Castellotti B, Bagarotti A, Corti S, Galimberti D, Cagnin A, Gabelli C, Ranieri M, Ceroni M, Siciliano G, Mazzini L, Cereda C, Scarpini E, Soraru G, Comi GP, D’Alfonso S, Gellera C, Ratti A, Landers JE, Silani V (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510

    PubMed  Google Scholar 

  137. Torres-Benito L, Ruiz R, Tabares L (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133

    CAS  PubMed  Google Scholar 

  138. Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone I L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567

    CAS  PubMed  Google Scholar 

  139. Trojanowski J Q, Lee VMY (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188

    CAS  PubMed  Google Scholar 

  140. Tseng Y, An K M, Esue O, Wirtz D (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826

    CAS  PubMed  Google Scholar 

  141. van Blitterswijk M, Baker MC, Bieniek KF, Knopman DS, Josephs KA, Boeve B, Caselli R, Wszolek ZK, Petersen R, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 14:463–469

    PubMed  Google Scholar 

  142. Wagner U, Utton M, Gallo J M, Miller C C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543

    CAS  PubMed  Google Scholar 

  143. Wong N K, He B P, Strong M J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982

    CAS  PubMed  Google Scholar 

  144. Wu C H, Fallini C, Ticozzi N, Keagle P J, Sapp P C, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron D M, Kost J E, Gonzalez-Perez P, Fox A D, Adams J, Taroni F, Tiloca C, Leclerc A L, Chafe S C, Mangroo D, Moore MJ, Zitzewitz J A, Xu Z S, van den Berg L H, Glass J D, Siciliano G, Cirulli E T, Goldstein D B, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco D A, Bassell G J, Silani V, Drory V E, Brown R H Jr, Landers J E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Xie Z, Srivastava D P, Photowala H, Kai L, Cahill M E, Woolfrey K M, Shum C Y, Surmeier D J, Penzes P (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Xu Z, Cork L C, Griffin J W, Cleveland D W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33

    CAS  PubMed  Google Scholar 

  147. Yang F, Jiang Q, Zhao J, Ren Y, Sutton M D, Feng J (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162

    CAS  PubMed  Google Scholar 

  148. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812

    CAS  PubMed  Google Scholar 

  149. Yang S, Fifita J A, Williams K L, Warraich ST, Pamphlett R, Nicholson G A, Blair I P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210

    Google Scholar 

  150. Yoshihara T, Yamamoto M, Hattori N, Misu K, Mori K, Koike H, Sobue G (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224

    CAS  PubMed  Google Scholar 

  151. Zeng L H, Xu L, Rensing N R, Sinatra P M, Rothman S M, Wong M (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613

    CAS  PubMed  Google Scholar 

  152. Zhang B, Carroll J, Trojanowski J Q, Yao Y, Iba M, Potuzak J S, Hogan A M L, Xie S X, Ballatore C, Smith A B 3rd, Lee V M L, Brunden K R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimerlike pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee E B, Xie S X, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski J Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231

    CAS  PubMed  Google Scholar 

  154. Zhang W, Benson D L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci, 21:5169–5181

    CAS  PubMed  Google Scholar 

  155. Zhu Q, Couillard-Després S, Julien J P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316

    CAS  PubMed  Google Scholar 

  156. Zou ZY, Sun Q, Liu MS, Li XG, Cui LY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Fath.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suchowerska, A.K., Fath, T. Cytoskeletal changes in diseases of the nervous system. Front. Biol. 9, 5–17 (2014). https://doi.org/10.1007/s11515-014-1290-6

Download citation

Keywords

  • cytoskeleton
  • actin, microtubules
  • intermediate filaments
  • nervous system
  • disease