Abstract
Gamma glutamyl transferases (GGT) are highly conserved enzymes that occur from bacteria to humans. They remove terminal γ-glutamyl residue from peptides and amides. GGTs play an important role in the homeostasis of glutathione (a major cellular antioxidant) and in the detoxification of xenobiotics in mammals. They are implicated in diseases like diabetes, inflammation, neurodegenerative diseases and cardiovascular diseases. The physiological role of GGTs in bacteria is still unclear. Nothing is known about the basis for the strong conservation of the enzyme across the living system. The review focuses on the enzyme’s physiology, chemistry and structural properties of the enzyme with emphasis on the evolutionary relationships. The available data indicate that the members of the GGT family share common structural features but are functionally heterogenous.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Anderson M E, Allison R D, Meister A (1982). Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids. Proc Natl Acad Sci USA, 79(4): 1088–1091
Arendt C S, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by Nterminal acetylation and promote particle assembly. EMBO J, 18(13): 3575–3585
Benlloch M, Ortega A, Ferrer P, Segarra R, Obrador E, Asensi M, Carretero J, Estrela J M (2005). Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J Biol Chem, 280(8): 6950–6959
Boanca G, Sand A, Barycki J J (2006). Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori gamma-glutamyltranspeptidase. J Biol Chem, 281(28): 19029–19037
Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki J J (2007). Autoprocessing of Helicobacter pylori gammaglutamyltranspeptidase leads to the formation of a threoninethreonine catalytic dyad. J Biol Chem, 282(1): 534–541
Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki J J (2007). Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threoninethreonine catalytic dyad. J Biol Chem, 282(1): 534–541
Bochtler M, Ditzel L, Groll M, Huber R (1997). Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci USA, 94(12): 6070–6074
Bompard-Gilles C, Villeret V, Davies G J, Fanuel L, Joris B, Frère J M, Van Beeumen J (2000). A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi. Structure, 8(2): 153–162
Brannigan J A, Dodson G, Duggleby H J, Moody P C, Smith J L, Tomchick D R, Murzin A G (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 378(6555): 416–419
Candela T, Fouet A (2006). Poly-gamma-glutamate in bacteria. Mol Microbiol, 60(5): 1091–1098
Carter B Z, Shi Z Z, Barrios R, Lieberman M W (1998). gammaglutamyl leukotrienase, a gamma-glutamyl transpeptidase gene family member, is expressed primarily in spleen. J Biol Chem, 273(43): 28277–28285
Carter B Z, Wiseman A L, Orkiszewski R, Ballard K D, Ou C N, Lieberman M W (1997). Metabolism of leukotriene C4 in gamma-glutamyl transpeptidase-deficient mice. J Biol Chem, 272(19): 12305–12310
Castonguay R, Lherbet C, Keillor J W (2003). Kinetic studies of rat kidney gamma-glutamyltranspeptidase deacylation reveal a general base-catalyzed mechanism. Biochemistry, 42(39): 11504–11513
Chevalier C, Thiberge J M, Ferrero R L, Labigne A (1999). Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol Microbiol, 31(5): 1359–1372
Chikhi N, Holic N, Guellaen G, Laperche Y (1999). Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol, 122(4): 367–380
Cook N D, Upperton K P, Challis B C, Peters T J (1987). The donor specificity and kinetics of the hydrolysis reaction of gamma-glutamyltransferase. Biochim Biophys Acta, 914(3): 240–245
Duggleby H J, Tolley S P, Hill C P, Dodson E J, Dodson G, Moody P C (1995). Penicillin acylase has a single-amino-acid catalytic centre. Nature, 373(6511): 264–268
Dunbar J A, Ogston S A, Ritchie A, Devgun M S, Hagart J, Martin B T (1985). Are problem drinkers dangerous drivers? An investigation of arrest for drinking and driving, serum gamma glutamyltranspeptidase activities, blood alcohol concentrations, and road traffic accidents: the Tayside Safe Driving Project. Br Med J (Clin Res Ed), 290(6471): 827–830
Elce J S, Broxmeyer B (1976). γ-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J, 153(2): 223–232
Elkins JM, Kershaw N J, Schofield C J (2005). X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster. Biochem J, 385(Pt 2): 565–573
Galivan J, Ryan T J, Chave K, Rhee M, Yao R, Yin D (2000). Glutamyl hydrolase. pharmacological role and enzymatic characterization. Pharmacol Ther, 85(3): 207–215
Gardell S J, Tate S S (1980). Affinity labeling of gamma-glutamyl transpeptidase by glutamine antagonists. Effects of the gamma-glutamyl transferase and proteinase activities. FEBS Lett, 122(2): 171–174
Gardell S J, Tate S S (1983). Effects of bile acids and their glycine conjugates on gamma-glutamyl transpeptidase. J Biol Chem, 258(10): 6198–6201
Gjerde H, Sakshaug J, Mørland J (1986). Heavy drinking among Norwegian male drunken drivers: a study of gamma-glutamyltransferase. Alcohol Clin Exp Res, 10(2): 209–212
Gouet P, Courcelle E, Stuart D I, Métoz F (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 15(4): 305–308
Gounni A S, Spanel-Borowski K, Palacios M, Heusser C, Moncada S, Lobos E (2001). Pulmonary inflammation induced by a recombinant Brugia malayi gamma-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses. Mol Med, 7(5): 344–354
Guo H C, Xu Q, Buckley D, Guan C (1998). Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem, 273(32): 20205–20212
Han L, Hiratake J, Tachi N, Suzuki H, Kumagai H, Sakata K (2006). Gamma-(monophenyl)phosphono glutamate analogues as mechanism-based inhibitors of gamma-glutamyl transpeptidase. Bioorg Med Chem, 14(17): 6043–6054
Hanigan M H (1995). Expression of gamma-glutamyl transpeptidase provides tumor cells with a selective growth advantage at physiological concentrations of cyst(e)ine. Carcinogenesis, 16(2): 181–185
Hashimoto Y, Futamura A, Nakarai H, Nakahara K (2001). Relationship between response of gamma-glutamyl transpeptidase to alcohol drinking and risk factors for coronary heart disease. Atherosclerosis, 158(2): 465–470
Heisterkamp N, Rajpert-De Meyts E, Uribe L, Forman H J, Groffen J (1991). Identification of a human gamma-glutamyl cleaving enzyme related to, but distinct from, gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 88(14): 6303–6307
Hinchman C A, Matsumoto H, Simmons T W, Ballatori N (1991). Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. J Biol Chem, 266(33): 22179–22185
Huseby N E (1977). Purification and some properties of gamma-glutamyltransferase from human liver. Biochim Biophys Acta, 483(1): 46–56
Ikeda Y, Fujii J, Anderson M E, Taniguchi N, Meister A (1995). Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase. J Biol Chem, 270(38): 22223–22228
Ikeda Y, Fujii J, Taniguchi N, Meister A (1995). Expression of an active glycosylated human gamma-glutamyl transpeptidase mutant that lacks a membrane anchor domain. Proc Natl Acad Sci USA, 92(1): 126–130
Ikeda Y, Taniguchi N (2005). Gene expression of gamma-glutamyltranspeptidase. Methods Enzymol, 401: 408–425
Inoue M, Hiratake J, Suzuki H, Kumagai H, Sakata K (2000). Identification of catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by gamma-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile. Biochemistry, 39(26): 7764–7771
Ishikawa T, Hasegawa S, Kasai T, Obata Y (1967). Changes in amino acid composition during germination of soybean Part IV Identification of α- and γ-glutamylaspartic acid. Agric Biol Chem, 31(4): 490–493
Isupov M N, Obmolova G, Butterworth S, Badet-Denisot M A, Badet B, Polikarpov I, Littlechild J A, Teplyakov A (1996). Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure, 4(7): 801–810
Karkowsky A M, Bergamini M V W, Orlowski M (1976). Kinetic studies of sheep kidney gamma-glutamyl transpeptidase. J Biol Chem, 251(15): 4736–4743
Kasai T, Ohmiya A, Sakamura S (1982). γ-Glutamyltranspeptidases in the metabolism of γ-glutamyl peptides in plants. Phytochemistry, 21(6): 1233–1239
Kawasaki Y, Ogawa T, Sasaoka K (1982). Occurrence and some properties of a novel γ-glutamyl transpeptidase responsible for the synthesis of γ-L-glutamyl-D-alanine in pea seedlings. Biochim Biophys Acta, 716(2): 194–200
Kean E A, Hare E R (1980). γ-Glutamyl transpeptidase of the ackee plant. Phytochemistry, 19(2): 194–203
Keillor J W, Castonguay R, Lherbet C (2005). Gamma-glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol, 401: 449–467
Keillor JW, Menard A, Castonguay R, Lherbet C, Rivard C (2004). Presteady-state kinetic studies of rat kidney γ-glutamyl transpeptidase confirm its ping-pong mechanism. J Phys Org Chem, 17(67): 529–536
Kim J H, Krahn J M, Tomchick D R, Smith J L, Zalkin H (1996). Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem, 271(26): 15549–15557
Kim Y, Yoon K H, Khang Y, Turley S, Hol W G (2000). The 2.0 A crystal structure of cephalosporin acylase. Structure, 8(10): 1059–1068
Kimura K, Itoh Y (2003). Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Appl Environ Microbiol, 69(5): 2491–2497
Kimura K, Tran L S, Uchida I, Itoh Y (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology, 150(Pt 12): 4115–4123
King J B, West M B, Cook P F, Hanigan M H (2009). A novel, speciesspecific class of uncompetitive inhibitors of γ-glutamyl transpeptidase. J Biol Chem, 284(14): 9059–9065
Kumar R S, Brannigan J A, Prabhune A A, Pundle A V, Dodson G G, Dodson E J, Suresh C G (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem, 281(43): 32516–32525
Lee D H, Ha M H, Kim J H, Christiani D C, Gross M D, Steffes M, Blomhoff R, Jacobs D R Jr (2003). Gamma-glutamyltransferase and diabetes—a 4 year follow-up study. Diabetologia, 46(3): 359–364
Lee Y S, Kim H W, Park S S (2000). The role of alpha-amino group of the N-terminal serine of beta subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. J Biol Chem, 275(50): 39200–39206
Leustek T, Martin M N, Bick J A, Davies J P (2000). Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol, 51(1): 141–165
Lherbet C, Keillor J W (2004). Probing the stereochemistry of the active site of gamma-glutamyl transpeptidase using sulfur derivatives of lglutamic acid. Org Biomol Chem, 2(2): 238–245
Lherbet C, Keillor J W (2004). Probing the stereochemistry of the active site of gamma-glutamyl transpeptidase using sulfur derivatives of lglutamic acid. Org Biomol Chem, 2(2): 238–245
Li Y, Chen J, Jiang W, Mao X, Zhao G, Wang E (1999). In vivo posttranslational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur J Biochem, 262(3): 713–719
Lieberman MW, Wiseman A L, Shi Z Z, Carter B Z, Barrios R, Ou C N, Chévez-Barrios P, Wang Y, Habib G M, Goodman J C, Huang S L, Lebovitz R M, Matzuk M M (1996). Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA, 93(15): 7923–7926
Lieberman MW, Wiseman A L, Shi Z Z, Carter B Z, Barrios R, Ou C N, Chévez-Barrios P, Wang Y, Habib G M, Goodman J C, Huang S L, Lebovitz R M, Matzuk M M (1996). Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA, 93(15): 7923–7926
London R E, Gabel S A (2001). Development and evaluation of a boronate inhibitor of gamma-glutamyl transpeptidase. Arch Biochem Biophys, 385(2): 250–258
Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science, 268(5210): 533–539
Martin M N, Slovin J P (2000). Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates. Plant Physiol, 122(4): 1417–1426
Mathew M W, Chen Y, Wickham S (2013). Novel insights into eukaryotic γ-glutamyl transpeptidase 1from the crystal structure of the glutamate-bound human enzyme. J Biol Chem, (In press)
Mayatepek E, Okun J G, Meissner T, Assmann B, Hammond J, Zschocke J, Lehmann W D (2004). Synthesis and metabolism of leukotrienes in gamma-glutamyl transpeptidase deficiency. J Lipid Res, 45(5): 900–904
Mehdi K, Thierie J, Penninckx M J (2001). gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J, 359(Pt 3): 631–637
Meister A (1973). On the enzymology of amino acid transport. Science, 180(4081): 33–39
Ménard A, Castonguay R, Lherbet C, Rivard C, Roupioz Y, Keillor J W (2001). Nonlinear free energy relationship in the general-acidcatalyzed acylation of rat kidney gamma-glutamyl transpeptidase by a series of gamma-glutamyl anilide substrate analogues. Biochemistry, 40(42): 12678–12685
Mesiter A, Anderson M E (1973). Glutathione. Annu Rev Biochem, 52(1): 711–760
Michalska K, Brzezinski K, Jaskolski M (2005). Crystal structure of isoaspartyl aminopeptidase in complex with L-aspartate. J Biol Chem, 280(31): 28484–28491
Minami H, Suzuki H, Kumagai H (2003). A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity. FEMS Microbiol Lett, 224(2): 169–173
Minami H, Suzuki H, Kumagai H (2004). Gamma-glutamyltranspeptidase, but not YwrD, is important in utilization of extracellular glutathione as a sulfur source in Bacillus subtilis. J Biol Chem, 186: 1213–1214
Nakayama R, Kumagai H, Tochikura T (1984). Gamma-glutamyltranspeptidase from Proteus mirabilis: localization and activation by phospholipids. J Bacteriol, 160(3): 1031–1036
Nemesánszky E, Lott J A (1985). Gamma-glutamyltransferase and its isoenzymes: progress and problems. Clin Chem, 31(6): 797–803
Niederau C, Niederau M, Strohmeyer G, Bertling L, Sonnenberg A (1990). Does acute consumption of large alcohol amounts lead to pancreatic injury? A prospective study of serum pancreatic enzymes in 300 drunken drivers. Digestion, 45(2): 115–120
Niida S, Kawahara M, Ishizuka Y, Ikeda Y, Kondo T, Hibi T, Suzuki Y, Ikeda K, Taniguchi N (2004). Gamma-glutamyltranspeptidase stimulates receptor activator of nuclear factor-kappaB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J Biol Chem, 279(7): 5752–5756
Obrador E, Carretero J, Ortega A, Medina I, Rodilla V, Pellicer J A, Estrela J M (2002). Gamma-glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology, 35(1): 74–81
Oertli M, Noben M, Engler D B, Semper R P, Reuter S, Maxeiner J, Gerhard M, Taube C, Müller A (2013). Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci USA, 110(8): 3047–3052
Ogawa Y, Hosoyama H, Hamano M, Motai H (1991). Purification and properties of gamma-glutamyltranspeptidase from Bacillus subtilis (natto). Agric Biol Chem, 55(12): 2971–2977
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006). Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci USA, 103(17): 6471–6476
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006). Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci USA, 103(17): 6471–6476
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2007). Crystal structure of the gamma-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J Biol Chem, 282(4): 2433–2439
Ortega A L, Carretero J, Obrador E, Gambini J, Asensi M, Rodilla V, Estrela J M (2003). Tumor cytotoxicity by endothelial cells. Impairment of the mitochondrial system for glutathione uptake in mouse B16 melanoma cells that survive after in vitro interaction with the hepatic sinusoidal endothelium. J Biol Chem, 278(16): 13888–13897
Pei J, Grishin N V (2003). Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein Sci, 12(5): 1131–1135
Pompella A, De Tata V, Paolicchi A, Zunino F (2006). Expression of gamma-glutamyltransferase in cancer cells and its significance in drug resistance. Biochem Pharmacol, 71(3): 231–238
Rawlings N D, Morton F R, Barrett A J (2006). MEROPS: the peptidase database. Nucleic Acids Res, 34(Suppl 1): D270–D272
Saridakis V, Christendat D, Thygesen A, Arrowsmith C H, Edwards A M, Pai E F (2002). Crystal structure of Methanobacterium thermoautotrophicum conserved protein MTH1020 reveals an NTN-hydrolase fold. Proteins, 48(1): 141–143
Scouller K, Conigrave K M, Macaskill P, Irwig L, Whitfield J B (2000). Should we use carbohydrate-deficient transferrin instead of gamma-glutamyltransferase for detecting problem drinkers? A systematic review and metaanalysis. Clin Chem, 46(12): 1894–1902
Sharath B, Prabhune AA, Suresh CG, Wilkinson AJ, Brannigan JA (2010). Crystal structure of Gamma Glutamyl Transferase from Bacillus subtilis. Protein Data Bank deposit ID 2v36
Shaw L M, London J W, Fetterolf D, Garfinkel D (1977). Gamma-Glutamyltransferase: kinetic properties and assay conditions when gamma-glutamyl-4-nitroanilide and its 3-carboxy derivative are used as donor substrates. Clin Chem, 23(1): 79–85
Shaw L M, London J W, Petersen L E (1978). Isolation of gamma-glutamyltransferase from human liver, and comparison with the enzyme from human kidney. Clin Chem, 24(6): 905–915
Shaw L M, Strømme J H, London J L, Theodorsen L (1983). International Federation of Clinical Chemistry. Scientific Committee, Analytical Section. Expert Panel on Enzymes. IFCC methods for measurement of enzymes. Part 4. IFCC methods for gamma-glutamyltransferase ((gamma-glutamyl)-peptide: amino acid gamma-glutamyltransferase, EC 2.3.2.2). IFCC Document, Stage 2, Draft 2, 1983–01 with a view to an IFCC Recommendation. Clin Chim Acta, 135(3): 315F–338F
Sherwood R F, Melton R G, Alwan S M, Hughes P (1985). Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method. Eur J Biochem, 148(3): 447–453
Sian J, Dexter D T, Lees A J, Daniel S, Jenner P, Marsden C D (1994). Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol, 36(3): 356–361
Singh J C, Chander J, Singh S, Singh G, Atal C K (1986). gamma-Glutamyl transpeptidase: a novel biochemical marker in inflammation. Biochem Pharmacol, 35(21): 3753–3760
Smith T K, Ikeda Y, Fujii J, Taniguchi N, Meister A (1995). Different sites of acivicin binding and inactivation of gamma-glutamyl transpeptidases. Proc Natl Acad Sci USA, 92(6): 2360–2364
Smith T K, Meister A (1994). Active deglycosylated mammalian gamma-glutamyl transpeptidase. FASEB J, 8(9): 661–664
Storozhenko S, Belles-Boix E, Babiychuk E, Hérouart D, Davey M W, Slooten L, Van Montagu M, Inzé D, Kushnir S (2002). Gamma-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol, 128(3): 1109–1119
Stromme J H, Theodorsen L (1976). Gamma-glutamyltransferase: Substrate inhibition, kinetic mechanism, and assay conditions. Clin Chem, 22(4): 417–421
Suresh C G, Pundle A V, SivaRaman H, Rao K N, Brannigan J A, McVey C E, Verma C S, Dauter Z, Dodson E J, Dodson G G (1999). Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol, 6(5): 414–416
Suzuki H, Hashimoto W, Kumagai H (1993). Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J Bacteriol, 175(18): 6038–6040
Suzuki H, Kumagai H (2002). Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem, 277(45): 43536–43543
Suzuki H, Kumagai H, Tochikura T (1986). Gamma-glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol, 168(3): 1332–1335
Suzuki H, Kumagai H, Tochikura T (1986). Gamma-glutamyltranspeptidase from Escherichia coli K-12: purification and properties. J Bacteriol, 168(3): 1325–1331
Suzuki H, Miwa C, Ishihara S, Kumagai H (2004). A single amino acid substitution converts gamma-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase). Appl Environ Microbiol, 70(10): 6324–6328
Szasz G (1969). A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin Chem, 15(2): 124–136
Takahashi H, Hirose K, Watanabe H (2004). Necessity of meningococcal gamma-glutamyl aminopeptidase for Neisseria meningitidis growth in rat cerebrospinal fluid (CSF) and CSF-like medium. J Bacteriol, 186(1): 244–247
Takahashi H, Watanabe H (2004). Post-translational processing of Neisseria meningitidis gamma-glutamyl aminopeptidase and its association with inner membrane facing to the cytoplasmic space. FEMS Microbiol Lett, 234(1): 27–35
Tanaka T O, Hirata T, Futamura K, et al (1993). Purification and characterization of poly (γ-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM 4222. Biosci Biotechnol Biochem, 57(12): 2148–2153
Taniguchi N, Ikeda Y (1998). gamma-Glutamyl transpeptidase: catalytic mechanism and gene expression. Adv Enzymol Relat Areas Mol Biol, 72: 239–278
Tate S S, Meister A (1974). Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem, 249(23): 7593–7602
Tate S S, Meister A (1974). Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 71(9): 3329–3333
Tate S S, Meister A (1977). Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proc Natl Acad Sci USA, 74(3): 931–935
Tate S S, Meister A (1978). Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci USA, 75(10): 4806–4809
Tate S S, Meister A (1985). gamma-Glutamyl transpeptidase from kidney. Methods Enzymol, 113: 400–419
Thompson G A, Meister A (1977). Interrelationships between the binding sites for amino acids, dipeptides, and gamma-glutamyl donors in gamma-glutamyl transpeptidase. J Biol Chem, 252(19): 6792–6798
Thompson G A, Meister A (1980). Modulation of gamma-glutamyl transpeptidase activities by hippurate and related compounds. J Biol Chem, 255(5): 2109–2113
Thompson J D, Higgins D G, Gibson T J (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22): 4673–4680
Toller I M, Neelsen K J, Steger M, Hartung M L, Hottiger M O, Stucki M, Kalali B, Gerhard M, Sartori A A, Lopes M, Müller A (2011). Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA, 108(36): 14944–14949
Volcani B E, Margalith P (1957). A new species (Flavobacterium polyglutamicum) which hydrolyzes the gamma-L-glutamyl bond in polypeptides. J Bacteriol, 74(5): 646–655
Wada K, Irie M, Suzuki H, Fukuyama K (2010). Crystal structure of the halotolerant gamma-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solventexposed catalytic pocket. FEBS J, 277(4): 1000–1009
Webb E C (1992). Enzyme Nomenclature 1992 Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, International Union of Biochemistry and Molecular Biology. San Diego, Calif, USA: Academic Press, 6th edition
Whitfield J B (2001). Gamma glutamyl transferase. Crit Rev Clin Lab Sci, 38(4): 263–355
Whitfield J B, Pounder R E, Neale G, Moss D W (1972). Serumglytamyl transpeptidase activity in liver disease. Gut, 13(9): 702–708
Xu K, Strauch M A (1996). Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis. J Bacteriol, 178(14): 4319–4322
Yamaguchi T, Takei N, Araki K, Ishii K, Nagano T, Ichikawa T, Kumanishi T, Nawa H (2000). Molecular characterization of a novel gamma-glutamyl transpeptidase homologue found in rat brain. J Biochem, 128(1): 101–106
Yao R, Schneider E, Ryan T J, Galivan J (1996). Human gamma-glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc Natl Acad Sci USA, 93(19): 10134–10138
Zhang H, Forman H J, Choi J (2005). Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol, 401: 468–483
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Balakrishna, S., Prabhune, A.A. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective. Front. Biol. 9, 51–65 (2014). https://doi.org/10.1007/s11515-014-1288-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11515-014-1288-0


