Frontiers in Biology

, Volume 8, Issue 4, pp 363–368 | Cite as

How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases

Mini-Review

Abstract

Xeroderma pigmentosum group B (XPB) and D (XPD) are two DNA helicases inside the transcription factor TFIIH complex required for both transcription and DNA repair. The importance of these helicases is underscored by the fact that mutations of XPB and XPD cause diseases with extremely high sensitivity to UV-light and high risk of cancer, premature aging, etc. This mini-review focuses on recent developments in both structural and functional characterization of these XP helicases to illustrate their distinguished biological roles within the architectural restriction of the TFIIH complex. In particular, molecular mechanisms of DNA unwinding by these helicases for promoter opening during transcription initiation and bubble-creation around the lesion during DNA repair are described based on the integration of the crystal structures of XPB and XPD helicases into the architecture of the TFIIH complex.

Keywords

XPB XPD TFIIH helicase DNA repair nucleotide excision repair transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang W H, Kornberg R D (2000). Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell, 102(5): 609–613PubMedCrossRefGoogle Scholar
  2. Compe E, Egly J M (2012). TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol, 13(6): 343–354PubMedCrossRefGoogle Scholar
  3. Egly J M, Coin F (2011). A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst), 10(7): 714–721CrossRefGoogle Scholar
  4. Fan L, Arvai A S, Cooper P K, Iwai S, Hanaoka F, Tainer J A (2006). Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell, 22(1): 27–37PubMedCrossRefGoogle Scholar
  5. Fan L, Fuss J O, Cheng Q J, Arvai A S, Hammel M, Roberts V A, Cooper P K, Tainer J A (2008). XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell, 133(5): 789–800PubMedCrossRefGoogle Scholar
  6. Fuss J O, Tainer J A (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst), 10(7): 697–713CrossRefGoogle Scholar
  7. Gillet L C J, Schärer O D (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev, 106(2): 253–276PubMedCrossRefGoogle Scholar
  8. Hanawalt P C, Spivak G (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol, 9(12): 958–970PubMedCrossRefGoogle Scholar
  9. Hilario E, Li Y, Nobumori Y, Liu X, Fan L (2013). Structure of the Cterminal half of human XPB helicase and the impact of the diseasecausing mutation XP11BE. Acta Crystallogr D Biol Crystallogr, 69(Pt 2): 237–246PubMedCrossRefGoogle Scholar
  10. Kim T K, Ebright R H, Reinberg D (2000). Mechanism of ATPdependent promoter melting by transcription factor IIH. Science, 288(5470): 1418–1422PubMedCrossRefGoogle Scholar
  11. Kuper J, Kisker C (2013). DNA Helicases in NER, BER, and MMR. Adv Exp Med Biol, 767: 203–224PubMedCrossRefGoogle Scholar
  12. Liu H, Rudolf J, Johnson K A, McMahon S A, Oke M, Carter L, McRobbie A M, Brown S E, Naismith J H, White M F (2008). Structure of the DNA repair helicase XPD. Cell, 133(5): 801–812PubMedCrossRefGoogle Scholar
  13. Mathieu N, Kaczmarek N, Naegeli H (2010). Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci U S A, 107(41): 17545–17550PubMedCrossRefGoogle Scholar
  14. Min J H, Pavletich N P (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449(7162): 570–575PubMedCrossRefGoogle Scholar
  15. Naegeli H, Modrich P, Friedberg E C (1993). The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. J Biol Chem, 268(14): 10386–10392PubMedGoogle Scholar
  16. Naegeli H, Sugasawa K (2011). The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst), 10(7): 673–683CrossRefGoogle Scholar
  17. Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly J M, Coin F (2009). Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J, 28(19): 2971–2980PubMedCrossRefGoogle Scholar
  18. Roth H M, Römer J, Grundler V, Van Houten B, Kisker C, Tessmer I (2012). XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst), 11(3): 286–293CrossRefGoogle Scholar
  19. Rouillon C, White M F (2010). The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem, 285(14): 11013–11022PubMedCrossRefGoogle Scholar
  20. Sarker A H, Tsutakawa S E, Kostek S, Ng C, Shin D S, Peris M, Campeau E, Tainer J A, Nogales E, Cooper P K (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell, 20(2): 187–198PubMedCrossRefGoogle Scholar
  21. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly J M (2000). Molecular structure of human TFIIH. Cell, 102(5): 599–607PubMedCrossRefGoogle Scholar
  22. Singleton M R, Dillingham M S, Wigley D B (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 76: 23–50PubMedCrossRefGoogle Scholar
  23. Wolski S C, Kuper J, Hänzelmann P, Truglio J J, Croteau D L, Van Houten B, Kisker C (2008). Crystal structure of the FeS clustercontaining nucleotide excision repair helicase XPD. PLoS Biol, 6(6): e149PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of California at RiversideRiversideUSA

Personalised recommendations