Frontiers in Biology

, Volume 8, Issue 2, pp 247–259 | Cite as

Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model

  • R. Fossion
  • D. A. Hartasánchez
  • O. Resendis-Antonio
  • A. Frank
Research Article

Abstract

Complex systems from different fields of knowledge often do not allow a mathematical description or modeling, because of their intricate structure composed of numerous interacting components. As an alternative approach, it is possible to study the way in which observables associated with the system fluctuate in time. These time series may provide valuable information about the underlying dynamics. It has been suggested that complex dynamic systems, ranging from ecosystems to financial markets and the climate, produce generic early-warning signals at the “tipping points,” where they announce a sudden shift toward a different dynamical regime, such as a population extinction, a systemic market crash, or abrupt shifts in the weather. On the other hand, the framework of Self-Organized Criticality (SOC), suggests that some complex systems, such as life itself, may spontaneously converge toward a critical point. As a particular example, the quasispecies model suggests that RNA viruses self-organize their mutation rate near the error-catastrophe threshold, where robustness and evolvability are balanced in such a way that survival is optimized. In this paper, we study the time series associated to a classical discrete quasispecies model for different mutation rates, and identify early-warning signals for critical mutation rates near the error-catastrophe threshold, such as irregularities in the kurtosis and a significant increase in the autocorrelation range, reminiscent of 1/f noise. In the present context, we find that the early-warning signals, rather than broadcasting the collapse of the system, are the fingerprint of survival optimization.

Keywords

time series complexity early-warning signals quasispecies 1/f noise optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison P (1997). Fractals and chaos: An illustrated course. Bristol and Philadelphia: Institute of PublishingCrossRefGoogle Scholar
  2. Aldana M, Balleza E, Kauffman S, Resendiz O (2007). Robustness and evolvability in genetic regulatory networks. J Theor Biol, 245(3): 433–448PubMedCrossRefGoogle Scholar
  3. Anderson J P, Daifuku R, Loeb L A (2004). Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol, 58(1): 183–205PubMedCrossRefGoogle Scholar
  4. Azhar M A, Gopala K (1992). Clustering Poisson process and burst noise. Jpn J Appl Phys, 31(Part 1, No. 2A): 391–394CrossRefGoogle Scholar
  5. Bak P (1996). How Nature works: the science of self-organized criticality. New York: Springer-Verlag.Google Scholar
  6. Bak P, Tang C, Wiesenfeld K (1987). Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett, 59(4): 381–384PubMedCrossRefGoogle Scholar
  7. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA, 105(4): 1232–1237PubMedCrossRefGoogle Scholar
  8. Bedeian A G, Mossholder K W (2000). On the use of the coefficient of variation as a measure of diversity. Organ Res Methods, 3(3): 285–297CrossRefGoogle Scholar
  9. Berglund N, Gentz B (2002). Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch Dyn, 2(03): 327–356CrossRefGoogle Scholar
  10. Biebricher C K, Eigen M (2005). The error threshold. Virus Res, 107(2): 117–127PubMedCrossRefGoogle Scholar
  11. Biggs R, Carpenter S R, Brock W A (2009). Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA, 106(3): 826–831PubMedCrossRefGoogle Scholar
  12. Boettiger C, Hastings A (2013). Tipping points: From patterns to predictions. Nature, 493(7431): 157–158PubMedGoogle Scholar
  13. Bull J J, Meyers L A, Lachmann M (2005), Quasispecies made simple. Plos Comput Biol, 1:e61 (0450–0460).Google Scholar
  14. Carpenter S R, Brock W A (2006). Rising variance: a leading indicator of ecological transition. Ecol Lett, 9(3): 311–318PubMedCrossRefGoogle Scholar
  15. Carpenter S R, Brock W A (2010). Early warnings of regime shifts in spatial dynamics using the discrete Fourier transform. Ecosphere, 1(5): 10CrossRefGoogle Scholar
  16. Carpenter S R, Cole J J, Pace M L, Batt R, Brock W A, Cline T, Coloso J, Hodgson J R, Kitchell J F, Seekell D A, Smith L, Weidel B (2011). Early warnings of regime shifts: a whole-ecosystem experiment. Science, 332(6033): 1079–1082PubMedCrossRefGoogle Scholar
  17. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010). Scale-free correlations in starling flocks. Proc Natl Acad Sci USA, 107(26): 11865–11870PubMedCrossRefGoogle Scholar
  18. Crotty S, Cameron C E, Andino R (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA, 98(12): 6895–6900PubMedCrossRefGoogle Scholar
  19. DeCarlo L T (1997). On the meaning and use of kurtosis. Psychol Methods, 2(3): 292–307CrossRefGoogle Scholar
  20. Doane D P, Seward L E (2011). Measuring skewness: A forgotten statistic? J Stat Educ, 19: 1–18Google Scholar
  21. Drake J M, Griffen B D (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314): 456–459PubMedCrossRefGoogle Scholar
  22. Eigen M (2002). Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA, 99(21): 13374–13376PubMedCrossRefGoogle Scholar
  23. Flandrin P (1989). On the spectrum of fractional brownian motion. IEEE Trans Inf Theory, 35(1): 197–199CrossRefGoogle Scholar
  24. Fossion R, Landa E, Stránský P, Velázquez V, López Vieyra J C, Garduño, García D, Frank A (2010). Scale invariance as a symmetry in physical and biological systems: Listening to photons, bubbles and heartbeats. In: Benet L, Hess P O, Torres J M, Wolf K B, editors, Symmetries in Nature: Symposium in Memoriam Marcos Moshinsky (Cuernavaca, Mexico, 7–14 august), New York: AIP Conf. Proc., volume 1323: 74–90Google Scholar
  25. Guttal V, Jayaprakash C (2008). Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett, 11(5): 450–460PubMedCrossRefGoogle Scholar
  26. Halley J M (1996). Ecology, evolution and 1/f-noise. Trends Ecol Evol, 11(1): 33–37PubMedCrossRefGoogle Scholar
  27. Halley J M, Inchausti P (2004). The increasing importance of 1/f-noises as models of ecological variability. Fluct Noise Lett, 4(02): R1–R6CrossRefGoogle Scholar
  28. Hausdorff J M, Peng C K (1996). Multiscaled randomness: A possible source of 1/f noise in biology. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 54(2): 2154–2157PubMedCrossRefGoogle Scholar
  29. Hausdorff J M, Zemany L, Peng C K, Goldberger A L (1999). Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol, 86(3): 1040–1047PubMedGoogle Scholar
  30. Jonsson C B, Milligan B G, Arterburn J B (2005). Potential importance of error catastrophe to the development of antiviral strategies for hantaviruses. Virus Res, 107(2): 195–205PubMedCrossRefGoogle Scholar
  31. Kauffman S (1995). At home in the universe: The search for the laws of self-organization and complexity. New York, Oxford: Oxford University PressGoogle Scholar
  32. Keshner M S (1982). 1/f noise. Proc IEEE, 70(3): 212–218CrossRefGoogle Scholar
  33. Kleinen T, Held H, Petschel-Held G (2003). The potential role of spectral properties in detecting thresholds in the earth system: application to the thermohaline circulation. Ocean Dyn, 53(2): 53–63CrossRefGoogle Scholar
  34. Landa E, Morales I O, Fossion R, Stránský P, Velázquez V, Vieyra J C, Frank A (2011). Criticality and long-range correlations in time series in classical and quantum systems. Phys Rev E Stat Nonlin Soft Matter Phys, 84(1 Pt 2): 016224PubMedCrossRefGoogle Scholar
  35. Lauring A S, Andino R (2010). Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 6(7): e1001005PubMedCrossRefGoogle Scholar
  36. Lenski R E, Barrick J E, Ofria C (2006). Balancing robustness and evolvability. PLoS Biol, 4(12): e428PubMedCrossRefGoogle Scholar
  37. Livina V N, Lenton T M (2007). A modified method for detecting incipient bifurcations in a dynamical system. Geophys Res Lett, 34(3): L03712CrossRefGoogle Scholar
  38. Manneville P (1980). Intermittency self-similarity and 1/f spectrum in dissipative dynamical systems. J Phys (Paris), 41(11): 1235–1243CrossRefGoogle Scholar
  39. Miramontes O (1995). Order-disorder transitions in the behavior of ant societies. Complexity, 1: 50–60Google Scholar
  40. Peng C K, Mietus J, Hausdorff JM, Havlin S, Stanley H E, Goldberger A L, (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett, 70(9): 1343–1346CrossRefGoogle Scholar
  41. Procaccia I, Schuster H (1983). Functional renormalization-group theory of universal 1/f noise in dynamical systems. Phys Rev A, 28(2): 1210–1212CrossRefGoogle Scholar
  42. Rosenstein M T, Collins J J, Luca C J D (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65(1–2): 117–134CrossRefGoogle Scholar
  43. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter S R, Dakos V, Held H, van Nes E H, Rietkerk M, Sugihara G (2009). Earlywarning signals for critical transitions. Nature, 461(7260): 53–59PubMedCrossRefGoogle Scholar
  44. Scheffer M, Carpenter S, Foley J A, Folke C, Walker B (2001). Catastrophic shifts in ecosystems. Nature, 413(6856): 591–596PubMedCrossRefGoogle Scholar
  45. Scheffer M, Carpenter S R, Lenton T M, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput I A, Levin S A, van Nes E H, Pascual M, Vandermeer J (2012). Anticipating critical transitions. Science, 338(6105): 344–348PubMedCrossRefGoogle Scholar
  46. Schuster H, Just W (2005) Deterministic chaos: an introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 4th edition.CrossRefGoogle Scholar
  47. Solé R V (2003). Phase transitions in unstable cancer cell populations. Eur Phys J B, 35: 117–123CrossRefGoogle Scholar
  48. Solé R V, Ferrer R, González-García I, Quer J, Domingo E (1999b). Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J Theor Biol, 198(1): 47–59PubMedCrossRefGoogle Scholar
  49. Solé R V, Manrubia S C, Benton M, Kauffman S, Bak P (1999a). Criticality and scaling in evolutionary ecology. Trends Ecol Evol, 14(4): 156–160PubMedCrossRefGoogle Scholar
  50. Solé R V, Miramontes O, Goodwin B C (1993a). Oscillations and chaos in ant societies. J Theor Biol, 161(3): 343–357CrossRefGoogle Scholar
  51. Solé R V, Miramontes O, Goodwin B C (1993b) Emergent behaviour in insect societies: Global oscillations, chaos and computation. In: Haken H, Mikhailov A, editors, Interdisciplinary Approaches To Nonlinear Complex Systems, Springer Series in Synergetics. Berlin Heidelberg: Springer-Verlag, volume 62:pp, 77–88CrossRefGoogle Scholar
  52. Wakeley J (2006). Coalescent theory: An introduction. Greenwood Village, Colorado: Roberts & CoGoogle Scholar
  53. Wilke C O, Wang J L, Ofria C, Lenski R E, Adami C (2001). Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844): 331–333PubMedCrossRefGoogle Scholar
  54. Williams G P (1997). Chaos theory tamed. Washington D.C.: Joseph Henry PressGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Fossion
    • 1
    • 2
  • D. A. Hartasánchez
    • 2
    • 3
  • O. Resendis-Antonio
    • 4
  • A. Frank
    • 2
    • 5
  1. 1.Instituto Nacional de Geriatría, Periférico Sur No. 2767, Col. San Jerónimo LídiceDel. Magdalena ContrerasMéxico D.F.Mexico
  2. 2.Centro de Ciencias de la Complejidad (C3)Universidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  3. 3.Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra)Barcelona, CataloniaSpain
  4. 4.Systems Biology GroupInstituto Nacional de Medicina Genomica (INMEGEN)MexicoMexico
  5. 5.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations