Aiken C T, Steffan J S, Guerrero C M, Khashwji H, Lukacsovich T, Simmons D, Purcell J M, Menhaji K, Zhu Y Z, Green K, Laferla F, Huang L, Thompson L M, Marsh J L (2009). Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem, 284(43): 29427–29436
PubMed
CAS
Article
Google Scholar
Albin R L, Reiner A, Anderson K D, Dure L S 4th, Handelin B, Balfour R, Whetsell W O Jr, Penney J B, Young A B (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol, 31(4): 425–430
PubMed
CAS
Article
Google Scholar
Albin R L, Reiner A, Anderson K D, Penney J B, Young A B (1990). Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol, 27(4): 357–365
PubMed
CAS
Article
Google Scholar
Altar C A, Cai N, Bliven T, Juhasz M, Conner J M, Acheson A L, Lindsay R M, Wiegand S J (1997). Anterograde transport of brainderived neurotrophic factor and its role in the brain. Nature, 389(6653): 856–860
PubMed
CAS
Article
Google Scholar
Arning L, Saft C, Wieczorek S, Andrich J, Kraus P H, Epplen J T (2007). NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet, 122(2): 175–182
PubMed
CAS
Article
Google Scholar
Arregui L, Benítez J A, Razgado L F, Vergara P, Segovia J (2011). Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol, 31(8): 1229–1243
PubMed
CAS
Article
Google Scholar
Atwal R S, Desmond C R, Caron N, Maiuri T, Xia J, Sipione S, Truant R (2011). Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol, 7(7): 453–460
PubMed
CAS
Article
Google Scholar
Averback P (1980). Histopathology of acute cell loss in Huntington’s chorea brain. J Pathol, 132(1): 55–61
PubMed
CAS
Article
Google Scholar
Aylward E H, Sparks B F, Field K M, Yallapragada V, Shpritz B D, Rosenblatt A, Brandt J, Gourley L M, Liang K, Zhou H, Margolis R L, Ross C A (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63(1): 66–72
PubMed
CAS
Article
Google Scholar
Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz K J, Martin J B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171
PubMed
CAS
Article
Google Scholar
Behrens P F, Franz P, Woodman B, Lindenberg K S, Landwehrmeyer G B (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain, 125(Pt 8): 1908–1922
PubMed
CAS
Article
Google Scholar
Bezprozvanny I, Hayden M R (2004). Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun, 322(4): 1310–1317
PubMed
CAS
Article
Google Scholar
Bezzi P, Gundersen V, Galbete J L, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7(6): 613–620
PubMed
CAS
Article
Google Scholar
Biglan K M, Ross C A, Langbehn D R, Aylward E H, Stout J C, Queller S, Carlozzi N E, Duff K, Beglinger L J, Paulsen J S, PREDICT-HD Investigators of the Huntington Study Group (2009). Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord, 24(12): 1763–1772
PubMed
Article
Google Scholar
Bradford J, Shin J Y, Roberts M, Wang C E, Li X J, Li S (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A, 106(52): 22480–22485
PubMed
CAS
Article
Google Scholar
Bradford J, Shin J Y, Roberts M, Wang C E, Sheng G, Li S, Li X J (2010). Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem, 285(14): 10653–10661
PubMed
CAS
Article
Google Scholar
Brown A M, Ransom B R (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55(12): 1263–1271
PubMed
Article
Google Scholar
Brown T B, Bogush A I, Ehrlich M E (2008). Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet, 17(20): 3095–3104
PubMed
CAS
Article
Google Scholar
Browne S E, Beal M F (2004). The energetics of Huntington’s disease. Neurochem Res, 29(3): 531–546
PubMed
CAS
Article
Google Scholar
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper M D, Hoddinott M, Sutphin G L, Leko V, McElwee J J, Vazquez-Manrique R P, Orfila A M, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 477(7365): 482–485
CAS
Google Scholar
Bydder G M, Steiner R E, Young I R, Hall A S, Thomas D J, Marshall J, Pallis C A, Legg N J (1982). Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol, 139(2): 215–236
PubMed
CAS
Google Scholar
Campesan S, Green E W, Breda C, Sathyasaikumar K V, Muchowski P J, Schwarcz R, Kyriacou C P, Giorgini F (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol, 21(11): 961–966
PubMed
CAS
Article
Google Scholar
Canals J M, Pineda J R, Torres-Peraza J F, Bosch M, Martín-Ibañez R, Muñoz M T, Mengod G, Ernfors P, Alberch J (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci, 24(35): 7727–7739
PubMed
CAS
Article
Google Scholar
Cha J H J, Frey A S, Alsdorf S A, Kerner J A, Kosinski C M, Mangiarini L, Penney J B Jr, Davies SW, Bates G P, Young A B (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci, 354(1386): 981–989
PubMed
CAS
Article
Google Scholar
Che H V B, Metzger S, Portal E, Deyle C, Riess O, Nguyen H P (2011). Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener, 6(1): 1
PubMed
CAS
Article
Google Scholar
Cho S R, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman S A (2007). Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest, 117(10): 2889–2902
PubMed
CAS
Article
Google Scholar
Choi Y S, Lee B, Cho H Y, Reyes I B, Pu X A, Saido T C, Hoyt K R, Obrietan K (2009). CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis, 36(2): 259–268
PubMed
CAS
Article
Google Scholar
Chou S Y, Weng J Y, Lai H L, Liao F, Sun S H, Tu P H, Dickson D W, Chern Y (2008). Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci, 28(13): 3277–3290
PubMed
CAS
Article
Google Scholar
Crook Z R, Housman D (2011). Huntington’s disease: can mice lead the way to treatment? Neuron, 69(3): 423–435
PubMed
CAS
Article
Google Scholar
Cudkowicz M, Kowall N W (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol, 27(2): 200–204
PubMed
CAS
Article
Google Scholar
Cui L, Jeong H, Borovecki F, Parkhurst C N, Tanese N, Krainc D (2006). Transcriptional repression of PGC-1αby mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127(1): 59–69
PubMed
CAS
Article
Google Scholar
Damiano M, Galvan L, Déglon N, Brouillet E (2010). Mitochondria in Huntington’s disease. Biochim Biophys Acta, 1802(1): 52–61
PubMed
CAS
Article
Google Scholar
de la Monte SM, Vonsattel J P, Richardson E P Jr, (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol, 47(5): 516–525
PubMed
Article
Google Scholar
Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal R S, Sassone J, Ciammola A, Steffan J S, Fouad K, Truant R, Sipione S (2012). Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A, 109(9): 3528–3533
PubMed
Article
Google Scholar
DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel J P, Carraway R, Reeves S A, et al (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14(5): 1075–1081
PubMed
CAS
Article
Google Scholar
DiFiglia M, Sapp E, Chase K O, Davies S W, Bates G P, Vonsattel J P, Aronin N (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277(5334): 1990–1993
PubMed
CAS
Article
Google Scholar
DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey R K, Rajeev K G, Manoharan M, Sah D W, Zamore P D, Aronin N (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A, 104(43): 17204–17209
PubMed
CAS
Article
Google Scholar
Donmez G (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci, 33(9): 494–501
PubMed
CAS
Article
Google Scholar
Duff K, Paulsen J S, Beglinger L J, Langbehn D R, Wang C, Stout J C, Ross C A, Aylward E, Carlozzi N E, Queller S, and the Predict-HD Investigators of the Huntington Study Group (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci, 22(2): 196–207
PubMed
Article
Google Scholar
Dumas EM, Van den Bogaard S J A, Ruber ME, Reilman R R, Stout J C, Craufurd D, Hicks S L, Kennard C, Tabrizi S J, Van Buchem M A, Van der Grond J, Roos R A (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp, 33(1): 203–212
PubMed
Article
Google Scholar
Duyao MP, Auerbach A B, Ryan A, Persichetti F, Barnes G T, McNeil S M, Ge P, Vonsattel J P, Gusella J F, Joyner A L, et al (1995). Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science, 269(5222): 407–410
PubMed
CAS
Article
Google Scholar
Ehrnhoefer D E, Sutton L, Hayden M R (2011). Small Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease. Neuroscientist, 17(5): 475–492
PubMed
CAS
Article
Google Scholar
Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante R J, Bonvento G (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067
PubMed
CAS
Article
Google Scholar
Ferrante R J, Kowall NW, Beal MF, Martin J B, Bird E D, Richardson E P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27
PubMed
CAS
Article
Google Scholar
Ferrante R J, Kowall N W, Beal M F, Richardson E P Jr, Bird E D, Martin J B (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230(4725): 561–563
PubMed
CAS
Article
Google Scholar
Fiacco T A, McCarthy K D (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci, 24(3): 722–732
PubMed
CAS
Article
Google Scholar
Fusco F R, Chen Q, Lamoreaux W J, Figueredo-Cardenas G, Jiao Y, Coffman J A, Surmeier D J, Honig M G, Carlock L R, Reiner A (1999). Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci, 19(4): 1189–1202
PubMed
CAS
Google Scholar
Gafni J, Papanikolaou T, Degiacomo F, Holcomb J, Chen S, Menalled L, Kudwa A, Fitzpatrick J, Miller S, Ramboz S, Tuunanen P I, Lehtimäki K K, Yang X W, Park L, Kwak S, Howland D, Park H, Ellerby L M (2012). Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci, 32(22): 7454–7465
PubMed
CAS
Article
Google Scholar
Gauthier L R, Charrin B C, Borrell-Pagès M, Dompierre J P, Rangone H, Cordelières F P, De Mey J, MacDonald M E, Lessmann V, Humbert S, Saudou F (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118(1): 127–138
PubMed
CAS
Article
Google Scholar
Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6): 918–934
PubMed
CAS
Article
Google Scholar
Gorski J A, Talley T, Qiu M, Puelles L, Rubenstein J L R, Jones K R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22(15): 6309–6314
PubMed
CAS
Google Scholar
Graham R K, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi M A, Metzler M, Bissada N, Wang L, Faull R L M, Gray M, Yang X W, Raymond L A, Hayden M R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029
PubMed
CAS
Article
Google Scholar
Graham R K, Deng Y, Slow E J, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby S C, Doty C N, Roy S, Wellington C L, Leavitt B R, Raymond L A, Nicholson DW, Hayden M R (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191
PubMed
CAS
Article
Google Scholar
Gray M, Shirasaki D I, Cepeda C, André VM, Wilburn B, Lu X H, Tao J, Yamazaki I, Li S H, Sun Y E, Li X J, Levine M S, Yang XW (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci, 28(24): 6182–6195
PubMed
CAS
Article
Google Scholar
Graybiel A M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511
PubMed
CAS
Article
Google Scholar
Greiner E R, Yang X W (2011). Huntington’s disease: flipping a switch on huntingtin. Nat Chem Biol, 7(7): 412–414
PubMed
CAS
Article
Google Scholar
Gu X, André V M, Cepeda C, Li S H, Li X J, Levine M S, Yang X W (2007). Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener, 2: 8
PubMed
Article
CAS
Google Scholar
Gu X, Greiner E R, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan J S, Thompson L M, Wetzel R, Yang X W (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron, 64(6): 828–840
PubMed
CAS
Article
Google Scholar
Gu X, Li C, Wei W, Lo V, Gong S, Li S H, Iwasato T, Itohara S, Li X J, Mody I, Heintz N, Yang X W (2005). Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron, 46(3): 433–444
PubMed
CAS
Article
Google Scholar
Guarente L (2007). Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol, 72: 483–488
PubMed
CAS
Article
Google Scholar
Guidetti P, Bates G P, Graham R K, Hayden M R, Leavitt B R, MacDonald M E, Slow E J, Wheeler V C, Woodman B, Schwarcz R (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197
PubMed
CAS
Article
Google Scholar
Gutekunst C A, Li S H, Yi H, Mulroy J S, Kuemmerle S, Jones R, Rye D, Ferrante R J, Hersch S M, Li X J (1999). Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci, 19(7): 2522–2534
PubMed
CAS
Google Scholar
Hardingham G E, Bading H (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89
PubMed
CAS
Article
Google Scholar
Hardingham G E, Bading H (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 682(11): 1–15
Google Scholar
Harper S Q, Staber P D, He X, Eliason S L, Martins I H, Mao Q, Yang L, Kotin R M, Paulson H L, Davidson B L (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A, 102(16): 5820–5825
PubMed
CAS
Article
Google Scholar
Harris G J, Pearlson G D, Peyser C E, Aylward E H, Roberts J, Barta P E, Chase G A, Folstein S E (1992). Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol, 31(1): 69–75
PubMed
CAS
Article
Google Scholar
Harrison L M (2012). Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol, 32(6): 907–918
PubMed
CAS
Article
Google Scholar
Hedreen J C, Peyser C E, Folstein S E, Ross C A (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett, 133(2): 257–261
PubMed
CAS
Article
Google Scholar
Heng M Y, Detloff P J, Albin R L (2008). Rodent genetic models of Huntington disease. Neurobiol Dis, 32(1): 1–9
PubMed
CAS
Article
Google Scholar
Heng M Y, Detloff P J, Wang P L, Tsien J Z, Albin R L (2009). In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci, 29(10): 3200–3205
PubMed
CAS
Article
Google Scholar
Hodgson J G, Agopyan N, Gutekunst C A, Leavitt B R, LePiane F, Singaraja R, Smith D J, Bissada N, McCutcheon K, Nasir J, Jamot L, Li X J, Stevens M E, Rosemond E, Roder J C, Phillips A G, Rubin E M, Hersch S M, Hayden M R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192
PubMed
CAS
Article
Google Scholar
Holmes S E, O’Hearn E, Rosenblatt A, Callahan C, Hwang H S, Ingersoll-Ashworth R G, Fleisher A, Stevanin G, Brice A, Potter N T, Ross C A, Margolis R L (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet, 29(4): 377–378
PubMed
CAS
Article
Google Scholar
Houtkooper R H, Pirinen E, Auwerx J (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13(4): 225–238
PubMed
CAS
Google Scholar
Hult S, Soylu R, Björklund T, Belgardt B F, Mauer J, Brüning J C, Kirik D, Petersén Å (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab, 13(4): 428–439
PubMed
CAS
Article
Google Scholar
Humbert S, Bryson E A, Cordelières F P, Connors N C, Datta S R, Finkbeiner S, Greenberg M E, Saudou F (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell, 2(6): 831–837
PubMed
CAS
Article
Google Scholar
Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
PubMed
CAS
Article
Google Scholar
Jauch D, Urbańska E M, Guidetti P, Bird E D, Vonsattel J P, WhetsellW O Jr, Schwarcz R (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci, 130(1): 39–47
PubMed
CAS
Article
Google Scholar
Jeong H, Cohen D E, Cui L, Supinski A, Savas J N, Mazzulli J R, Yates J R 3rd, Bordone L, Guarente L, Krainc D (2012). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med, 18(1): 159–165
CAS
Article
Google Scholar
Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
PubMed
CAS
Article
Google Scholar
Jernigan T L, Salmon D P, Butters N, Hesselink J R (1991). Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry, 29(1): 68–81
PubMed
CAS
Article
Google Scholar
Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenina T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang X W, Tamashiro K L, Aja S, Moran T H, Luthi-Carter R, Martin B, Maudsley S, Mattson M P, Cichewicz R H, Ross C A, Holtzman D M, Krainc D, Duan W (2012). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med, 18(1): 153–158
CAS
Article
Google Scholar
Johri A, Calingasan N Y, Hennessey T M, Sharma A, Yang L, Wille E, Chandra A, Beal M F (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet, 21(5): 1124–1137
PubMed
CAS
Article
Google Scholar
Kim J, Moody J P, Edgerly C K, Bordiuk O L, Cormier K, Smith K, Beal MF, Ferrante R J (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet, 19(20): 3919–3935
PubMed
CAS
Article
Google Scholar
Kita H, Kitai S T (1988). Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res, 447(2): 346–352
PubMed
CAS
Article
Google Scholar
Klöppel S, Draganski B, Golding C V, Chu C, Nagy Z, Cook P A, Hicks S L, Kennard C, Alexander D C, Parker G J M, Tabrizi S J, Frackowiak R S (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain, 131(Pt 1): 196–204
PubMed
Google Scholar
Kolodziej L R, Paleolog E M, Williams R O (2011). Kynurenine metabolism in health and disease. Amino Acids, 41(5): 1173–1183
PubMed
CAS
Article
Google Scholar
Kordasiewicz H B, Stanek LM, Wancewicz E V, Mazur C, McAlonis M M, Pytel K A, Artates J W, Weiss A, Cheng S H, Shihabuddin L S, Hung G, Bennett C F, Cleveland D W (2012). Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron, 74(6): 1031–1044
PubMed
CAS
Article
Google Scholar
Kovács K A, Steullet P, Steinmann M, Do K Q, Magistretti P J, Halfon O, Cardinaux J R (2007). TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A, 104(11): 4700–4705
PubMed
Article
CAS
Google Scholar
Lange H, Thörner G, Hopf A, Schröder K F (1976). Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci, 28(4): 401–425
PubMed
CAS
Article
Google Scholar
Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, Chesselet MF (1999). Enhanced sensitivity to N-methyl-Daspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532
PubMed
CAS
Article
Google Scholar
Li H, Li S H, Johnston H, Shelbourne P F, Li X J (2000). Aminoterminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet, 25(4): 385–389
PubMed
CAS
Article
Google Scholar
Li L, Fan M, Icton C D, Chen N, Leavitt B R, Hayden MR, Murphy T H, Raymond L A (2003). Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging, 24(8): 1113–1121
PubMed
CAS
Article
Google Scholar
Li S, Zhang C, Takemori H, Zhou Y, Xiong Z Q (2009). TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci, 29(8): 2334–2343
PubMed
CAS
Article
Google Scholar
Liévens J C, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates G P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821
PubMed
Article
CAS
Google Scholar
Lin J, Wu P H, Tarr P T, Lindenberg K S, St-Pierre J, Zhang C Y, Mootha V K, Jäger S, Vianna C R, Reznick R M, Cui L, Manieri M, Donovan M X, Wu Z, Cooper M P, Fan M C, Rohas L M, Zavacki A M, Cinti S, Shulman G I, Lowell B B, Krainc D, Spiegelman B M (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119(1): 121–135
PubMed
CAS
Article
Google Scholar
Lin J, Yang R, Tarr P T, Wu P H, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard C B, Spiegelman B M (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell, 120(2): 261–273
PubMed
CAS
Article
Google Scholar
Lu X H, Yang X W (2012). “Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington’s Disease. Neuron, 74(6): 964–966
PubMed
CAS
Article
Google Scholar
Lunkes A, Lindenberg K S, Ben-Haïem L, Weber C, Devys D, Landwehrmeyer G B, Mandel J L, Trottier Y (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell, 10(2): 259–269
PubMed
CAS
Article
Google Scholar
Luthi-Carter R, Strand A, Peters N L, Solano S M, Hollingsworth Z R, Menon A S, Frey A S, Spektor B S, Penney E B, Schilling G, Ross C A, Borchelt D R, Tapscott S J, Young A B, Cha J H, Olson J M (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet, 9(9): 1259–1271
PubMed
CAS
Article
Google Scholar
Macdonald V, Halliday G (2002). Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis, 10(3): 378–386
PubMed
Article
Google Scholar
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S W, Bates G P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506
PubMed
CAS
Article
Google Scholar
Mann D M, Oliver R, Snowden J S (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol, 85(5): 553–559
PubMed
CAS
Article
Google Scholar
Mantamadiotis T, Lemberger T, Bleckmann S C, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat Genet, 31(1): 47–54
PubMed
CAS
Article
Google Scholar
Mattsson B, Gottfries C G, Roos B E, Winblad B (1974). Huntington’s chorea: pathology and brain amines. Acta Psychiatr Scand Suppl, 255: 269–277
PubMed
CAS
Article
Google Scholar
McBride J L, Boudreau R L, Harper S Q, Staber P D, Monteys A M, Martins I, Gilmore B L, Burstein H, Peluso RW, Polisky B, Carter B J, Davidson B L (2008). Artificial miRNAs mitigate shRNAmediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A, 105(15): 5868–5873
PubMed
CAS
Article
Google Scholar
McGill J K, Beal M F (2006). PGC-1α, a new therapeutic target in Huntington’s disease? Cell, 127(3): 465–468
PubMed
CAS
Article
Google Scholar
Menalled L, El-Khodor B F, Patry M, Suárez-Fariñas M, Orenstein S J, Zahasky B, Leahy C, Wheeler V, Yang X W, MacDonald M E, Morton A J, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009). Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis, 35(3): 319–336
PubMed
CAS
Article
Google Scholar
Menalled L B, Sison J D, Dragatsis I, Zeitlin S, Chesselet M F O (2003). Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol, 465(1): 11–26
PubMed
CAS
Article
Google Scholar
Metzler M, Gan L, Mazarei G, Graham R K, Liu L, Bissada N, Lu G, Leavitt B R, Hayden M R (2010). Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci, 30(43): 14318–14329
PubMed
CAS
Article
Google Scholar
Miller B R, Dorner J L, Shou M, Sari Y, Barton S J, Sengelaub D R, Kennedy R T, Rebec G V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337
PubMed
CAS
Article
Google Scholar
Miller J P, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C, Kwak S, Botas J, Hughes R E, Ellerby L M (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 67(2): 199–212
PubMed
CAS
Article
Google Scholar
Milnerwood A J, Cummings DM, Dallérac GM, Brown J Y, Vatsavayai S C, Hirst M C, Rezaie P, Murphy K P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703
PubMed
CAS
Article
Google Scholar
Milnerwood A J, Gladding C M, Pouladi M A, Kaufman A M, Hines R M, Boyd J D, Ko R W Y, Vasuta O C, Graham R K, Hayden M R, Murphy T H, Raymond L A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190
PubMed
CAS
Article
Google Scholar
Milnerwood A J, Raymond L A (2010). Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci, 33(11): 513–523
PubMed
CAS
Article
Google Scholar
Myers R H, Vonsattel J P, Paskevich P A, Kiely D K, Stevens T J, Cupples L A, Richardson E P Jr, Bird E D (1991). Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol, 50(6): 729–742
PubMed
CAS
Article
Google Scholar
Okamoto S I, Pouladi M A, Talantova M, Yao D, Xia P, Ehrnhoefer D E, Zaidi R, Clemente A, Kaul M, Graham R K, Zhang D, Vincent Chen H S, Tong G, Hayden M R, Lipton S A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med
Orr H T, Zoghbi H Y (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30: 575–621
PubMed
CAS
Article
Google Scholar
Parker J A, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 37(4): 349–350
PubMed
CAS
Article
Google Scholar
Paulsen J S, Hayden M, Stout J C, Langbehn D R, Aylward E, Ross C A, Guttman M, Nance M, Kieburtz K, Oakes D, Shoulson I, Kayson E, Johnson S, Penziner E, Predict-HD Investigators of the Huntington Study Group (2006). Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol, 63(6): 883–890
PubMed
Article
Google Scholar
Paulsen J S, Langbehn D R, Stout J C, Aylward E, Ross C A, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger L J, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry, 79(8): 874–880
PubMed
CAS
Article
Google Scholar
Paulsen J S, Wang C, Duff K, Barker R, Nance M, Beglinger L, Moser D, Williams J K, Simpson S, Langbehn D, Van Kammen D P, and the PREDICT-HD Investigators of the Huntington Study Group (2010). Challenges assessing clinical endpoints in early Huntington disease. Mov Disord, 25(15): 2595–2603
PubMed
Article
Google Scholar
Petersén Å, Björkqvist M (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci, 24(4): 961–967
PubMed
Article
Google Scholar
Pfrieger F W, Ungerer N (2011). Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res, 50(4): 357–371
PubMed
CAS
Article
Google Scholar
Ramos, E. M., Latourelle, J. C., Lee, J.-H., Gillis, T., Mysore, J. S., Squitieri, F., Pardo, A., Donato, S., Hayden, M. R., Morrison, P. J., et al. (2012). Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum. Genet.
Ratovitski T, Gucek M, Jiang H, Chighladze E, Waldron E, D’Ambola J, Hou Z, Liang Y, Poirier MA, Hirschhorn R R, Graham R, Hayden M R, Cole R N, Ross C A (2009). Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem, 284(16): 10855–10867
PubMed
CAS
Article
Google Scholar
Raymond L A, André V M, Cepeda C, Gladding C M, Milnerwood A J, Levine M S (2011). Pathophysiology of Huntington’s disease: timedependent alterations in synaptic and receptor function. Neuroscience, 198: 252–273
PubMed
CAS
Article
Google Scholar
Reading S A J, Yassa M A, Bakker A, Dziorny A C, Gourley L M, Yallapragada V, Rosenblatt A, Margolis R L, Aylward E H, Brandt J, Mori S, Van Zijl P, Bassett S S, Ross C A (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res, 140(1): 55–62
PubMed
Article
Google Scholar
Reiner A, Albin R L, Anderson K D, D’Amato C J, Penney J B, Young A B (1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A, 85(15): 5733–5737
PubMed
CAS
Article
Google Scholar
Reiner A, Dragatsis I, Zeitlin S, Goldowitz D (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol, 28(3): 259–276
PubMed
CAS
Article
Google Scholar
Roos R A, Bots G T, Hermans J (1986). Quantitative analysis of morphological features in Huntington’s disease. Acta Neurol Scand, 73(2): 131–135
PubMed
CAS
Article
Google Scholar
Rosas H D, Feigin A S, Hersch S M (2004). Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx, 1(2): 263–272
PubMed
CAS
Article
Google Scholar
Rosas H D, Koroshetz W J, Chen Y I, Skeuse C, Vangel M, Cudkowicz M E, Caplan K, Marek K, Seidman L J, Makris N, Jenkins B G, Goldstein J M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620
PubMed
CAS
Article
Google Scholar
Rosas H D, Lee S Y, Bender A C, Zaleta A K, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha J H, Salat D H, Hersch SM (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4): 2995–3004
PubMed
Article
Google Scholar
Rosas H D, Salat D H, Lee S Y, Zaleta A K, Hevelone N, Hersch S M (2008). Complexity and heterogeneity: what drives the everchanging brain in Huntington’s disease? Ann N Y Acad Sci, 1147: 196–205
PubMed
Article
Google Scholar
Rosas H D, Tuch D S, Hevelone N D, Zaleta A K, Vangel M, Hersch S M, Salat D H (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord, 21(9): 1317–1325
PubMed
Article
Google Scholar
Ross C A, Tabrizi S J (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol, 10(1): 83–98
PubMed
CAS
Article
Google Scholar
Runne H, Régulier E, Kuhn A, Zala D, Gokce O, Perrin V, Sick B, Aebischer P, Déglon N, Luthi-Carter R (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): 9723–9731
PubMed
CAS
Article
Google Scholar
Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L (1991). Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry, 54(10): 888–891
PubMed
CAS
Article
Google Scholar
Schilling G, Becher MW, Sharp A H, Jinnah H A, Duan K, Kotzuk J A, Slunt H H, Ratovitski T, Cooper J K, Jenkins N A, Copeland N G, Price D L, Ross C A, Borchelt D R (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant Nterminal fragment of huntingtin. Hum Mol Genet, 8(3): 397–407
PubMed
CAS
Article
Google Scholar
Schwarcz R, Bennett J P Jr, Coyle J T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869
PubMed
CAS
Article
Google Scholar
Schwarcz R, Guidetti P, Sathyasaikumar K V, Muchowski P J (2010). Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol, 90(2): 230–245
PubMed
CAS
Article
Google Scholar
Sharma P, Savy L, Britton J, Taylor R, Howick A, Patton M (1996). Huntington’s disease: a molecular genetic and CT comparison. J Neurol Neurosurg Psychiatry, 60(2): 206–208
PubMed
CAS
Article
Google Scholar
Shaywitz A J, Greenberg M E (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821–861
PubMed
CAS
Article
Google Scholar
Shin J Y, Fang Z H, Yu Z X, Wang C E, Li S H, Li X J (2005). Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol, 171(6): 1001–1012
PubMed
CAS
Article
Google Scholar
Simmons D A, Mehta R A, Lauterborn J C, Gall C M, Lynch G (2011). Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol Dis, 41(2): 436–444
PubMed
CAS
Article
Google Scholar
Simmons D A, Rex C S, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A, 106(12): 4906–4911
PubMed
CAS
Article
Google Scholar
Slow E J, Van Raamsdonk J, Rogers D, Coleman S H, Graham R K, Deng Y, Oh R, Bissada N, Hossain S M, Yang Y Z, Li X J, Simpson E M, Gutekunst C A, Leavitt B R, Hayden M R (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet, 12(13): 1555–1567
PubMed
CAS
Article
Google Scholar
Spampanato J, Gu X, Yang X W, Mody I (2008). Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience, 157(3): 606–620
PubMed
CAS
Article
Google Scholar
Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104
PubMed
CAS
Article
Google Scholar
Strand A D, Baquet Z C, Aragaki A K, Holmans P, Yang L, Cleren C, Beal M F, Jones L, Kooperberg C, Olson J M, Jones K R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768
PubMed
CAS
Article
Google Scholar
Subramaniam S, Sixt KM, Barrow R, Snyder S H (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932): 1327–1330
PubMed
CAS
Article
Google Scholar
Subramaniam S, Snyder S H (2011). Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology, 60(7–8): 1187–1192
PubMed
CAS
Article
Google Scholar
Tabrizi S J, Langbehn D R, Leavitt B R, Roos R A, Durr A, Craufurd D, Kennard C, Hicks S L, Fox N C, Scahill R I, Borowsky B, Tobin A J, Rosas H D, Johnson H, Reilmann R, Landwehrmeyer B, Stout J C, TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol, 8(9): 791–801
PubMed
Article
Google Scholar
Tabrizi S J, Reilmann R, Roos R A C, Durr A, Leavitt B, Owen G, Jones R, Johnson H, Craufurd D, Hicks S L, Kennard C, Landwehrmeyer B, Stout J C, Borowsky B, Scahill R I, Frost C, Langbehn D R, TRACK-HD investigators (2012). Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACKHD study: analysis of 24 month observational data. Lancet Neurol, 11(1): 42–53
PubMed
Article
Google Scholar
Tallaksen-Greene S J, Janiszewska A, Benton K, Ruprecht L, Albin R L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407
PubMed
CAS
Article
Google Scholar
Tebbenkamp A T N, Green C, Xu G, Denovan-Wright E M, Rising A C, Fromholt S E, Brown H H, Swing D, Mandel R J, Tessarollo L, Borchelt D R (2011). Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet, 20(14): 2770–2782
PubMed
CAS
Article
Google Scholar
The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983
Article
Google Scholar
Thomas E A, Coppola G, Tang B, Kuhn A, Kim S, Geschwind D H, Brown T B, Luthi-Carter R, Ehrlich M E (2011). In vivo cellautonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet, 20(6): 1049–1060
PubMed
CAS
Article
Google Scholar
Thompson L M, Aiken C T, Kaltenbach L S, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke J G, Khashwji H, Lukacsovich T, Zhu Y Z, Lau A L, Massey A, Hayden M R, Zeitlin S O, Finkbeiner S, Green K N, LaFerla F M, Bates G, Huang L, Patterson P H, Lo D C, Cuervo AM, Marsh J L, Steffan J S (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol, 187(7): 1083–1099
PubMed
CAS
Article
Google Scholar
Tsunemi T, Ashe T D, Morrison B E, Soriano K R, Au J, Roque R A V, Lazarowski E R, Damian V A, Masliah E, La Spada A R (2012). PGC-1 rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med, 142(4): 142ra97
Article
CAS
Google Scholar
Valenza M, Leoni V, Karasinska J M, Petricca L, Fan J, Carroll J, Pouladi M A, Fossale E, Nguyen H P, Riess O, MacDonald M, Wellington C, DiDonato S, Hayden M, Cattaneo E (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci, 30(32): 10844–10850
PubMed
CAS
Article
Google Scholar
van den Bogaard S J A, Dumas EM, Acharya T P, Johnson H, Langbehn D R, Scahill R I, Tabrizi S J, Van Buchem M A, Van der Grond J, Roos R A C, the TRACK-HD Investigator Group (2011a). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol, 258(3): 412–420
PubMed
Article
Google Scholar
van den Bogaard S J A, Dumas E M, Ferrarini L, Milles J, van Buchem M A, van der Grond J, Roos R A C (2011b). Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy—results from the TRACK-HD study. J Neurol Sci, 307(1–2): 60–68
PubMed
Article
Google Scholar
Vonsattel J P, DiFiglia M (1998). Huntington disease. J Neuropathol Exp Neurol, 57(5): 369–384
PubMed
CAS
Article
Google Scholar
Vonsattel J P, Myers R H, Stevens T J, Ferrante R J, Bird E D, Richardson E P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577
PubMed
CAS
Article
Google Scholar
Vonsattel J P G (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol, 115(1): 55–69
PubMed
Article
Google Scholar
Waldron-Roby E, Ratovitski T, Wang X, Jiang M, Watkin E, Arbez N, Graham R K, Hayden M R, Hou Z, Mori S, Swing D, Pletnikov M, Duan W, Tessarollo L, Ross C A (2012). Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci, 32(1): 183–193
PubMed
CAS
Article
Google Scholar
Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z (2012). Truncated N-terminal huntingtin fragment with expandedpolyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai), 44(3): 249–258
CAS
Article
Google Scholar
Warby S C, Doty C N, Graham R K, Shively J, Singaraja R R, Hayden M R (2009). Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci, 40(2): 121–127
PubMed
CAS
Article
Google Scholar
Wellington C L, Ellerby L M, Leavitt B R, Roy S, Nicholson D W, Hayden M R (2003). Huntingtin proteolysis in Huntington disease. Clin Neurosci Res, 3: 129–139
CAS
Article
Google Scholar
Weydt P, Pineda V V, Torrence A E, Libby R T, Satterfield T F, Lazarowski E R, Gilbert M L, Morton G J, Bammler T K, Strand A D, Cui L, Beyer R P, Easley C N, Smith A C, Krainc D, Luquet S, Sweet I R, Schwartz M W, La Spada A R (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab, 4(5): 349–362
PubMed
CAS
Article
Google Scholar
White J K, Auerbach W, Duyao MP, Vonsattel J P, Gusella J F, Joyner A L, MacDonald M E (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet, 17(4): 404–410
PubMed
CAS
Article
Google Scholar
Wilburn B, Rudnicki D D, Zhao J, Weitz T M, Cheng Y, Gu X, Greiner E, Park C S, Wang N, Sopher B L, La Spada A R, Osmand A, Margolis R L, Sun Y E, Yang X W (2011). An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron, 70(3): 427–440
PubMed
CAS
Article
Google Scholar
Woodman B, Butler R, Landles C, Lupton M K, Tse J, Hockly E, Moffitt H, Sathasivam K, Bates G P (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull, 72(2–3): 83–97
PubMed
CAS
Article
Google Scholar
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla R C, Spiegelman B M (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1): 115–124
PubMed
CAS
Article
Google Scholar
Xie Y, Hayden M R, Xu B (2010). BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci, 30(44): 14708–14718
PubMed
CAS
Article
Google Scholar
Yanai A, Huang K, Kang R, Singaraja R R, Arstikaitis P, Gan L, Orban P C, Mullard A, Cowan C M, Raymond L A, Drisdel R C, Green W N, Ravikumar B, Rubinsztein D C, El-Husseini A, Hayden M R (2006). Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci, 9(6): 824–831
PubMed
CAS
Article
Google Scholar
Yang, X. W., and Gray, M. (2011). Mouse Models for Validating Preclinical Candidates for Huntington’s Disease. Neurobiology of Huntington’s Disease: Applications to Drug Discovery.
Zeron M M, Hansson O, Chen N, Wellington C L, Leavitt B R, Brundin P, Hayden M R, Raymond L A (2002). Increased sensitivity to Nmethyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860
PubMed
CAS
Article
Google Scholar
Zheng, B., Liao, Z., Locascio, J. J., Lesniak, K. A., Roderick, S. S., Watt, M. L., Eklund, A. C., Zhang-James, Y., Kim, P. D., Hauser, M. A., et al. (2010). PGC-1, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease. Sci. Transl. Med. 2, 52ra73–52ra73.
PubMed
Article
CAS
Google Scholar
Zuccato C, Ciammola A, Rigamonti D, Leavitt B R, Goffredo D, Conti L, MacDonald M E, Friedlander R M, Silani V, Hayden M R, Timmusk T, Sipione S, Cattaneo E (2001). Loss of huntingtinmediated BDNF gene transcription in Huntington’s disease. Science, 293(5529): 493–498
PubMed
CAS
Article
Google Scholar
Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt B R, Hayden M R, Timmusk T, Rigamonti D, Cattaneo E (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet, 35(1): 76–83
PubMed
CAS
Article
Google Scholar
Zuccato C, Valenza M, Cattaneo E (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981
PubMed
CAS
Article
Google Scholar
Zwilling D, Huang S Y, Sathyasaikumar K V, Notarangelo FM, Guidetti P, Wu H Q, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie J Y, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski J M, Masliah E, Schwarcz R, Muchowski P J (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145(6): 863–874
PubMed
CAS
Article
Google Scholar