Skip to main content
Log in

Functional protein microarray: an ideal platform for investigating protein binding property

  • Review
  • Published:
Frontiers in Biology

Abstract

Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with microarrays of glycoconjugates and lectins. Glycobiology, 15(1): 31–41

    Article  PubMed  CAS  Google Scholar 

  • Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem, 309(2): 253–260

    Article  PubMed  CAS  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1473(1): 4–8

    Article  PubMed  CAS  Google Scholar 

  • Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem, 74(5): 927–933

    Article  PubMed  CAS  Google Scholar 

  • Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc, 4(3): 393–411

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Mecklenburg M, Lundström I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta, 530(2): 167–171

    Article  CAS  Google Scholar 

  • Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron, 20(4): 753–764

    Article  PubMed  CAS  Google Scholar 

  • Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 5(1): 69–74

    Article  PubMed  CAS  Google Scholar 

  • Chen C S, Zhu H (2006). Protein microarrays. Biotechniques, 40(4): 423–429

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem, 79(15): 5698–5702

    Article  PubMed  CAS  Google Scholar 

  • Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol, 264: 135–143

    PubMed  CAS  Google Scholar 

  • Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques, 34(2): 380–385

    PubMed  CAS  Google Scholar 

  • Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem, 139(3): 323–327

    Article  PubMed  CAS  Google Scholar 

  • Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem, 80(5): 1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev, 25(7): 767–778

    Article  PubMed  CAS  Google Scholar 

  • Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J, 59(4): 815–827

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem, 82(22): 9240–9247

    Article  PubMed  CAS  Google Scholar 

  • Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol, 30(2): 308–313

    Article  PubMed  CAS  Google Scholar 

  • Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev, 19(23): 2816–2826

    Article  PubMed  CAS  Google Scholar 

  • Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science, 306(5695): 482–484

    Article  PubMed  CAS  Google Scholar 

  • Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics, 4(6): 773–784

    Article  PubMed  CAS  Google Scholar 

  • Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 85(1): 257–263

    Article  PubMed  CAS  Google Scholar 

  • He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods, 5(2): 175–177

    Article  PubMed  CAS  Google Scholar 

  • Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA, 103(26): 9940–9945

    Article  PubMed  CAS  Google Scholar 

  • Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc, 1(2): 543–549

    Article  PubMed  CAS  Google Scholar 

  • Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol, 2(3): 153–157

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics, 7(13): 2151–2161

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA, 101(47): 16594–16599

    Article  PubMed  CAS  Google Scholar 

  • Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, Online Available February 3, 2012

    Google Scholar 

  • Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol, 723: 213–223

    Article  PubMed  CAS  Google Scholar 

  • Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073): 168–174

    Article  PubMed  CAS  Google Scholar 

  • Jones VW, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem, 70(7): 1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem, 77(15): 4719–4725

    Article  PubMed  CAS  Google Scholar 

  • Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis, 27(12): 2495–2504

    Article  PubMed  CAS  Google Scholar 

  • Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A, 1106(1–2): 67–74

    PubMed  CAS  Google Scholar 

  • Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol, 89(1): 117–123

    Article  PubMed  CAS  Google Scholar 

  • Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc, 128(32): 10413–10422

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry, 65(12): 1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics, 8(1): 99–108

    Article  PubMed  CAS  Google Scholar 

  • Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods, 2(11): 851–856

    Article  PubMed  CAS  Google Scholar 

  • Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics, 3(3): 254–264

    Article  PubMed  CAS  Google Scholar 

  • Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe, 10(4): 390–400

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G (2002). Protein microarrays and proteomics. Nat Genet, 32(Suppl): 526–532

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485): 1760–1763

    PubMed  CAS  Google Scholar 

  • Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundström I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta, 459(1): 25–31

    Article  CAS  Google Scholar 

  • Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc, 1(1): 30–45

    Article  PubMed  CAS  Google Scholar 

  • Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol, 21(12): 1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell, 143(6): 966–977

    Article  PubMed  CAS  Google Scholar 

  • Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA, 100(16): 9330–9335

    Article  PubMed  Google Scholar 

  • Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res, 13(1): 3–14

    Article  PubMed  CAS  Google Scholar 

  • Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol, 12(5): 449–453

    Article  PubMed  CAS  Google Scholar 

  • Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 6(6): 985–989

    Article  PubMed  CAS  Google Scholar 

  • Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol, 11(3): 300–305

    Article  PubMed  CAS  Google Scholar 

  • Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 23(1): 80–92

    Article  PubMed  CAS  Google Scholar 

  • Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through highdensity Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 104(11): 4730–4735

    Article  PubMed  CAS  Google Scholar 

  • Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav, 2(5): 416–420

    Article  PubMed  Google Scholar 

  • Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol, 457: 57–63

    Article  PubMed  CAS  Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, de Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science, 305(5680): 86–90

    Article  PubMed  CAS  Google Scholar 

  • Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28(3): 492–496

    PubMed  CAS  Google Scholar 

  • Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol, 86(9): 5179–5191

    Article  PubMed  CAS  Google Scholar 

  • Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta, 67(3): 472–478

    Article  PubMed  CAS  Google Scholar 

  • Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques, 29(3): 630–635

    PubMed  CAS  Google Scholar 

  • Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen, 10(8): 706–718

    Article  PubMed  CAS  Google Scholar 

  • Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology, 18(10): 761–769

    Article  PubMed  CAS  Google Scholar 

  • Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol, 24(10): 1253–1254

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem, 286(23): 20345–20353

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology, 17(10): 1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet, 36(5): 492–496

    Article  PubMed  CAS  Google Scholar 

  • The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science, 306(5696): 636–640

    Article  Google Scholar 

  • Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem, 171(1): 73–90

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol, 415: 341–351

    Article  PubMed  CAS  Google Scholar 

  • Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol, 19(1): 55–61

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics, 26(2): 287–289

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai), 43(3): 161–171

    Article  CAS  Google Scholar 

  • Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces, 58(2): 309–314

    Article  PubMed  CAS  Google Scholar 

  • Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 127(28): 9982–9983

    Article  PubMed  CAS  Google Scholar 

  • Zhou SM, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen, Online Available May 20, 2011

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol, 5(1): 40–45

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA, 104(9): 3129–3134

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt, 46(10): 1890–1895

    Article  PubMed  CAS  Google Scholar 

  • Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNAcontaining double minute chromosomes. Mol Cell, 12(6): 1489–1498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Zhu or Sheng-Ce Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SM., Cheng, L., Guo, SJ. et al. Functional protein microarray: an ideal platform for investigating protein binding property. Front. Biol. 7, 336–349 (2012). https://doi.org/10.1007/s11515-012-1236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1236-9

Keywords

Navigation