Skip to main content

Centrosome positioning and primary cilia assembly orchestrate neuronal development

Abstract

Establishment of axon and dendrite polarity, migration to a desired location in the developing brain, and establishment of proper synaptic connections are essential processes during neuronal development. The cellular and molecular mechanisms that govern these processes are under intensive investigation. The function of the centrosome in neuronal development has been examined and discussed in few recent studies that underscore the fundamental role of the centrosome in brain development. Clusters of emerging studies have shown that centrosome positioning tightly regulates neuronal development, leading to the segregation of cell factors, directed neurite differentiation, neuronal migration, and synaptic integration. Furthermore, cilia, that arise from the axoneme, a modified centriole, are emerging as new regulatory modules in neuronal development in conjunction with the centrosome. In this review, we focus on summarizing and discussing recent studies on centrosome positioning during neuronal development and also highlight recent findings on the role of cilia in brain development. We further discuss shared molecular signaling pathways that might regulate both centrosome and cilia associated signaling in neuronal development. Furthermore, molecular determinants such as DISC1 and LKB1 have been recently demonstrated to be crucial regulators of various aspects of neuronal development. Strikingly, these determinants might exert their function, at least in part, via the regulation of centrosome and cilia associated signaling and serve as a link between these two signaling centers. We thus include an overview of these molecular determinants.

This is a preview of subscription content, access via your institution.

References

  • Angers S, Moon R T (2009). Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 10(7): 468–477

    PubMed  CAS  Google Scholar 

  • Ansley S J, Badano J L, Blacque O E, Hill J, Hoskins B E, Leitch C C, Kim J C, Ross A J, Eichers E R, Teslovich TM, Mah A K, Johnsen R C, Cavender J C, Lewis R A, Leroux M R, Beales P L, Katsanis N (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature, 425(6958): 628–633

    PubMed  CAS  Article  Google Scholar 

  • Arellano J I, Guadiana S M, Breunig J J, Rakic P, Sarkisian M R (2012). Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol, 520(4): 848–873

    PubMed  CAS  Article  Google Scholar 

  • Arimura N, Kaibuchi K (2007). Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci, 8(3): 194–205

    PubMed  CAS  Article  Google Scholar 

  • Asada N, Sanada K (2010). LKB1-mediated spatial control of GSK3beta and adenomatous polyposis coli contributes to centrosomal forward movement and neuronal migration in the developing neocortex. J Neurosci, 30(26): 8852–8865

    PubMed  CAS  Article  Google Scholar 

  • Asada N, Sanada K (2007). LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. The Journal of neuroscience, 27(43): 11769–11775

    PubMed  CAS  Article  Google Scholar 

  • Baas A F, Boudeau J, Sapkota G P, Smit L, Medema R, Morrice N A, Alessi D R, Clevers H C (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J, 22(12): 3062–3072

    PubMed  CAS  Article  Google Scholar 

  • Baas P W, Yu W Q (1996). A composite model for establishing the microtubule arrays of the neuron. Mol Neurobiol, 12(2): 145–161

    PubMed  CAS  Article  Google Scholar 

  • Badano J L, Katsanis N (2006). Life without centrioles: cilia in the spotlight. Cell, 125(7): 1228–1230

    PubMed  CAS  Article  Google Scholar 

  • Bai J, Ramos R L, Ackman J B, Thomas A M, Lee R V, LoTurco J J (2003). RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci, 6(12): 1277–1283

    PubMed  CAS  Article  Google Scholar 

  • Baker K, Northam G B, Chong W K, Banks T, Beales P, Baldeweg T (2011). Neocortical and hippocampal volume loss in a human ciliopathy: A quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet A, 155A(1): 1–8

    PubMed  Google Scholar 

  • Barnes A P, Lilley B N, Pan Y A, Plummer L J, Powell A W, Raines A N, Sanes J R, Polleux F (2007). LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell, 129(3): 549–563

    PubMed  CAS  Article  Google Scholar 

  • Barnes A P, Polleux F (2009). Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci, 32(1): 347–381

    PubMed  CAS  Article  Google Scholar 

  • Basto R, Lau J, Vinogradova T, Gardiol A, Woods C G, Khodjakov A, Raff J W (2006). Flies without centrioles. Cell, 125(7): 1375–1386

    PubMed  CAS  Article  Google Scholar 

  • Bielas S, Higginbotham H, Koizumi H, Tanaka T, Gleeson J G (2004). Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu Rev Cell Dev Biol, 20(1): 593–618

    PubMed  CAS  Article  Google Scholar 

  • Bielas S L, Serneo F F, Chechlacz M, Deerinck T J, Perkins G A, Allen P B, Ellisman M H, Gleeson J G (2007). Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell, 129(3): 579–591

    PubMed  CAS  Article  Google Scholar 

  • Biernat J, Gustke N, Drewes G, Mandelkow E M, Mandelkow E (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 11(1): 153–163

    PubMed  CAS  Article  Google Scholar 

  • Bishop G A, Berbari N F, Lewis J, Mykytyn K (2007). Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol, 505(5): 562–571

    PubMed  Article  Google Scholar 

  • Blacque O E, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley S J, Badano J L, Mah A K, Beales P L, Davidson W S, Johnsen R C, Audeh M, Plasterk R H, Baillie D L, Katsanis N, Quarmby L M, Wicks S R, Leroux M R (2004). Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev, 18(13): 1630–1642

    PubMed  CAS  Article  Google Scholar 

  • Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Gdel M, Mller K, Herbst M, Hornung M, Doerken M, Kttgen M, Nitschke R, Igarashi P, Walz G, Kuehn E W (2010). Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol, 12(11): 1115–1122

    PubMed  CAS  Article  Google Scholar 

  • Boudeau J, Baas A F, Deak M, Morrice N A, Kieloch A, Schutkowski M, Prescott A R, Clevers H C, Alessi D R (2003). MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J, 22(19): 5102–5114

    PubMed  CAS  Article  Google Scholar 

  • Bradshaw N J, Christie S, Soares D C, Carlyle B C, Porteous D J, Millar J K (2009). NDE1 and NDEL1: multimerisation, alternate splicing and DISC1 interaction. Neurosci Lett, 449(3): 228–233

    PubMed  CAS  Article  Google Scholar 

  • Bradshaw N J, Soares D C, Carlyle B C, Ogawa F, Davidson-Smith H, Christie S, Mackie S, Thomson P A, Porteous D J, Millar J K (2011). PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1. J Neurosci, 31(24): 9043–9054

    PubMed  CAS  Article  Google Scholar 

  • Brandon N J, Handford E J, Schurov I, Rain J C, Pelling M, Duran-Jimeniz B, Camargo L M, Oliver K R, Beher D, Shearman M S, Whiting P J (2004). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci, 25(1): 42–55

    PubMed  CAS  Article  Google Scholar 

  • Breunig J J, Sarkisian M R, Arellano J I, Morozov Y M, Ayoub A E, Sojitra S, Wang B, Flavell R A, Rakic P, Town T (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA, 105(35): 13127–13132

    PubMed  CAS  Article  Google Scholar 

  • Burdick K E, Kamiya A, Hodgkinson C A, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra A K (2008). Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet, 17(16): 2462–2473

    PubMed  CAS  Article  Google Scholar 

  • Camargo LM, Collura V, Rain J C, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert T P, Whiting P J, Brandon N J (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry, 12(1): 74–86

    PubMed  CAS  Article  Google Scholar 

  • Chen G, Sima J, Jin M, Wang K Y, Xue X J, Zheng W, Ding Y Q, Yuan X B (2008). Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci, 11(1): 36–44

    PubMed  Article  CAS  Google Scholar 

  • Chen Y M, Wang Q J, Hu H S, Yu P C, Zhu J, Drewes G, Piwnica-Worms H, Luo Z G (2006). Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA, 103(22): 8534–8539

    PubMed  CAS  Article  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413

    PubMed  CAS  Article  Google Scholar 

  • Chilov D, Sinjushina N, Rita H, Taketo M M, Mäkelä T P, Partanen J (2011). Phosphorylated β-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol, 357(1): 259–268

    PubMed  CAS  Article  Google Scholar 

  • Chizhikov V V, Davenport J, Zhang Q, Shih E K, Cabello O A, Fuchs J L, Yoder B K, Millen K J (2007). Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci, 27(36): 9780–9789

    PubMed  CAS  Article  Google Scholar 

  • Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021

    PubMed  CAS  Article  Google Scholar 

  • Corbit K C, Shyer A E, Dowdle W E, Gaulden J, Singla V, Reiter J F (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms (vol 10, pg 70, 2008). Nat Cell Biol, 10(4): 497–497

    CAS  Google Scholar 

  • Dammermann A, Pemble H, Mitchell B J, McLeod I, Yates J R 3rd, Kintner C, Desai A B, Oegema K (2009). The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev, 23(17): 2046–2059

    PubMed  CAS  Article  Google Scholar 

  • de Anda F C, Meletis K, Ge X, Rei D, Tsai L H (2010). Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci, 30(31): 10391–10406

    PubMed  Article  CAS  Google Scholar 

  • de Anda F C, Pollarolo G, Da Silva J S, Camoletto P G, Feiguin F, Dotti C G (2005). Centrosome localization determines neuronal polarity. Nature, 436(7051): 704–708

    PubMed  Article  CAS  Google Scholar 

  • Dickson B J, Gilestro G F (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol, 22(1): 651–675

    PubMed  CAS  Article  Google Scholar 

  • Distel M, Hocking J C, Volkmann K, Kster RW (2010). The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol, 191(4): 875–890

    PubMed  CAS  Article  Google Scholar 

  • Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146–1158

    PubMed  CAS  Article  Google Scholar 

  • Einstein E B, Patterson C A, Hon B J, Regan K A, Reddi J, Melnikoff D E, Mateer M J, Schulz S, Johnson B N, Tallent M K (2010). Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci, 30(12): 4306–4314

    PubMed  CAS  Article  Google Scholar 

  • Ekker S C, Ungar A R, Greenstein P, von Kessler D P, Porter J A, Moon R T, Beachy P A (1995). Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol, 5(8): 944–955

    PubMed  CAS  Article  Google Scholar 

  • Etienne-Manneville S, Hall A (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell, 106(4): 489–498

    PubMed  CAS  Article  Google Scholar 

  • Etienne-Manneville S, Hall A (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421(6924): 753–756

    PubMed  CAS  Article  Google Scholar 

  • Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157–14162

    PubMed  CAS  Article  Google Scholar 

  • Feng Y, Olson E C, Stukenberg P T, Flanagan L A, Kirschner M W, Walsh C A (2000). LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron, 28(3): 665–679

    PubMed  CAS  Article  Google Scholar 

  • Feng Y Y, Walsh C A (2004). Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron, 44(2): 279–293

    PubMed  CAS  Article  Google Scholar 

  • Fliegauf M, Benzing T, Omran H (2007). When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol, 8(11): 880–893

    PubMed  CAS  Article  Google Scholar 

  • Fukuda T, Sugita S, Inatome R, Yanagi S (2010). CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J Biol Chem, 285(52): 40554–40561

    PubMed  CAS  Article  Google Scholar 

  • Gao W Q, Hatten M E (1993). Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science, 260(5106): 367–369

    PubMed  CAS  Article  Google Scholar 

  • Gardiner S L, Rieger R M (1980). Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res, 213(2): 247–252

    PubMed  CAS  Article  Google Scholar 

  • Grtner A, Fornasiero E F, Munck S, Vennekens K, Seuntjens E, Huttner W B, Valtorta F, Dotti C G (2012). N-cadherin specifies first asymmetry in developing neurons. EMBO J, 31(8): 1893–1903

    Article  CAS  Google Scholar 

  • Gonalves J, Nolasco S, Nascimento R, Lopez Fanarraga M, Zabala J C, Soares H (2010). TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep, 11(3): 194–200

    Article  CAS  Google Scholar 

  • Goodrich L V, Scott M P (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6): 1243–1257

    PubMed  CAS  Article  Google Scholar 

  • Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, Malik N, Huttner W, Westphal H (2009). Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol, 325(1): 24–32

    PubMed  CAS  Article  Google Scholar 

  • Gupta S K, Meiri K F, Mahfooz K, Bharti U, Mani S (2010). Coordination between extrinsic extracellular matrix cues and intrinsic responses to orient the centrosome in polarizing cerebellar granule neurons. J Neurosci, 30(7): 2755–2766

    PubMed  CAS  Article  Google Scholar 

  • Han Y G, Spassky N, Romaguera-Ros M, Garcia-Verdugo J M, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci, 11(3): 277–284

    PubMed  CAS  Article  Google Scholar 

  • Hndel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hllt V (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 89(3): 909–926

    Article  Google Scholar 

  • Hatanaka Y, Murakami F (2002). In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells. J Comp Neurol, 454(1): 1–14

    PubMed  Article  Google Scholar 

  • Hatten M E (2005). LIS-less neurons don’t even make it to the starting gate. J Cell Biol, 170(6): 867–871

    PubMed  CAS  Article  Google Scholar 

  • Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53

    PubMed  Article  CAS  Google Scholar 

  • Higginbotham H, Tanaka T, Brinkman B C, Gleeson J G (2006). GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol Cell Neurosci, 32(1–2): 118–132

    PubMed  CAS  Article  Google Scholar 

  • Higginbotham H R, Gleeson J G (2007). The centrosome in neuronal development. Trends Neurosci, 30(6): 276–283

    PubMed  CAS  Article  Google Scholar 

  • Hinds JW, Hinds P L (1978). Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J Comp Neurol, 179(2): 277–300

    PubMed  CAS  Article  Google Scholar 

  • Ho K S, Scott M P (2002). Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol, 12(1): 57–63

    PubMed  CAS  Article  Google Scholar 

  • Hu H Y (1999). Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron, 23(4): 703–711

    PubMed  CAS  Article  Google Scholar 

  • Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson K V (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962): 83–87

    PubMed  CAS  Article  Google Scholar 

  • Ibaez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen U P, North A, Heintz N, Omran H (2004). Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet, 13(18): 2133–2141

    Article  Google Scholar 

  • Inagaki N, Chihara K, Arimura N, Mnager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001). CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci, 4(8): 781–782

    PubMed  CAS  Article  Google Scholar 

  • Ishikawa H, Marshall W F (2011). Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol, 12(4): 222–234

    PubMed  CAS  Article  Google Scholar 

  • Ishizuka K, Kamiya A, Oh E C, Kanki H, Seshadri S, Robinson J F, Murdoch H, Dunlop A J, Kubo K, Furukori K, Huang B, Zeledon M, Hayashi-Takagi A, Okano H, Nakajima K, Houslay MD, Katsanis N, Sawa A (2011). DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature, 473(7345): 92–96

    PubMed  CAS  Article  Google Scholar 

  • Jacob L S, Wu X, Dodge M E, Fan C W, Kulak O, Chen B, Tang W, Wang B, Amatruda J F, Lum L (2011). Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci Signal, 4(157): ra4

    PubMed  Article  CAS  Google Scholar 

  • Jiang H, Guo W, Liang X, Rao Y (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell, 120(1): 123–135

    PubMed  CAS  Google Scholar 

  • Jin H, White S R, Shida T, Schulz S, Aguiar M, Gygi S P, Bazan J F, Nachury M V (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell, 141(7): 1208–1219

    PubMed  CAS  Article  Google Scholar 

  • Juric-Sekhar G, Adkins J, Doherty D, Hevner R F (2012). Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol, 123(5): 695–709

    PubMed  Article  Google Scholar 

  • Kamiya A, Kubo K I, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross C A, Hatten M E, Nakajima K, Sawa A (2005). A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol, 7(12): 1167–1178

    PubMed  Article  CAS  Google Scholar 

  • Kamiya A, Tan P L, Kubo K, Engelhard C, Ishizuka K, Kubo A, Tsukita S, Pulver A E, Nakajima K, Cascella N G, Katsanis N, Sawa A (2008). Recruitment of PCM1 to the centrosome by the cooperative action of DISC1 and BBS4: a candidate for psychiatric illnesses. Arch Gen Psychiatry, 65(9): 996–1006

    PubMed  CAS  Article  Google Scholar 

  • Killeen M T, Sybingco S S (2008). Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Dev Biol, 323(2): 143–151

    PubMed  CAS  Article  Google Scholar 

  • Kim J C, Badano J L, Sibold S, Esmail M A, Hill J, Hoskins B E, Leitch C C, Venner K, Ansley S J, Ross A J, Leroux M R, Katsanis N, Beales P L (2004). The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet, 36(5): 462–470

    PubMed  CAS  Article  Google Scholar 

  • Kishi M, Pan Y A, Crump J G, Sanes J R (2005). Mammalian SAD kinases are required for neuronal polarization. Science, 307(5711): 929–932

    PubMed  CAS  Article  Google Scholar 

  • Koizumi H, Tanaka T, Gleeson J G (2006). Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron, 49(1): 55–66

    PubMed  CAS  Article  Google Scholar 

  • Komuro H, Yacubova E (2001). Mode and tempo of tangential cell migration in the cerebellar external granular layer. The Journal of neuroscience, 21(2): 527–540

    PubMed  CAS  Google Scholar 

  • Kozminski K G, Johnson K A, Forscher P, Rosenbaum J L (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA, 90(12): 5519–5523

    PubMed  CAS  Article  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32(1): 149–184

    PubMed  CAS  Article  Google Scholar 

  • Kumamoto, N., Y. Gu, et al. (2012). A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15(3): 399–405, S391

    PubMed  CAS  Article  Google Scholar 

  • Kvajo M, McKellar H, Arguello P A, Drew L J, Moore H, MacDermott A B, Karayiorgou M, Gogos J A (2008). A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA, 105(19): 7076–7081

    PubMed  CAS  Article  Google Scholar 

  • Lancaster M A, Gleeson J G (2009). The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev, 19(3): 220–229

    PubMed  CAS  Article  Google Scholar 

  • Lee J E, Gleeson J G (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol, 24(2): 98–105

    PubMed  Article  Google Scholar 

  • Li J, Lee W L, Cooper J A (2005). NudEL targets dynein to microtubule ends through LIS1. Nat Cell Biol, 7(7): 686–690

    PubMed  CAS  Article  Google Scholar 

  • Lienkamp S, Ganner A, Walz G (2012). Inversin, Wnt signaling and primary cilia. Differentiation, 83(2): S49–S55

    PubMed  CAS  Article  Google Scholar 

  • Louvi A, Grove E A (2011). Cilia in the CNS: the quiet organelle claims center stage. Neuron, 69(6): 1046–1060

    PubMed  CAS  Article  Google Scholar 

  • Mao Y W, Ge X C, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 136(6): 1017–1031

    PubMed  CAS  Article  Google Scholar 

  • McAllister A K (2002). Conserved cues for axon and dendrite growth in the developing cortex. Neuron, 33(1): 2–4

    PubMed  CAS  Article  Google Scholar 

  • Millar J K, Christie S, Porteous D J (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun, 311(4): 1019–1025

    PubMed  CAS  Article  Google Scholar 

  • Mirzadeh Z, Han Y G, Soriano-Navarro M, Garca-Verdugo J M, Alvarez-Buylla A (2010). Cilia organize ependymal planar polarity. J Neurosci, 30(7): 2600–2610

    PubMed  CAS  Article  Google Scholar 

  • Morgan J L, Dhingra A, Vardi N, Wong R O (2006). Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci, 9(1): 85–92

    PubMed  CAS  Article  Google Scholar 

  • Morris J A, Kandpal G, Ma L, Austin C P (2003). DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet, 12(13): 1591–1608

    PubMed  CAS  Article  Google Scholar 

  • Nachury MV, Loktev A V, Zhang Q, Westlake C J, Pernen J, Merdes A, Slusarski D C, Scheller R H, Bazan J F, Sheffield V C, Jackson P K (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6): 1201–1213

    PubMed  CAS  Article  Google Scholar 

  • Noctor S C, Martnez-Cerdeo V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7(2): 136–144

    PubMed  CAS  Article  Google Scholar 

  • Ocbina P J, Dizon M L V, Shin L, Szele F G (2006). Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres. Mol Cell Neurosci, 33(2): 126–135

    PubMed  CAS  Article  Google Scholar 

  • Olbrich H, Hffner K, Kispert A, Vlkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone P G, Knowles M, Mitchison H M, Meeks M, Chung E M, Hildebrandt F, Sudbrak R, Omran H (2002). Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet, 30(2): 143–144

    PubMed  CAS  Article  Google Scholar 

  • Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten M E, Snyder S H, Ross C A, Sawa A (2003). Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA, 100(1): 289–294

    PubMed  CAS  Article  Google Scholar 

  • Palazzo A F, Joseph H L (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current biology, CB 11(19): 1536–1541

    CAS  Article  Google Scholar 

  • Pazour G J, Dickert B L, Vucica Y, Seeley E S, Rosenbaum J L, Witman G B, Cole D G (2000). Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 151(3): 709–718

    PubMed  CAS  Article  Google Scholar 

  • Pazour G J, Witman G B (2003). The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol, 15(1): 105–110

    PubMed  CAS  Article  Google Scholar 

  • Pedersen L B, Rosenbaum J L (2008). Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol, 85: 23–61

    PubMed  CAS  Article  Google Scholar 

  • Phillips C L, Miller K J, Filson A J, Nrnberger J, Clendenon J L, Cook G W, Dunn K W, Overbeek P A, Gattone V H 2nd, Bacallao R L (2004). Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol, 15(7): 1744–1755

    PubMed  Article  Google Scholar 

  • Polleux F, Giger R J, Ginty D D, Kolodkin A L, Ghosh A (1998). Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science, 282(5395): 1904–1906

    PubMed  CAS  Article  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000). Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature, 404(6778): 567–573

    PubMed  CAS  Article  Google Scholar 

  • Raftopoulou M, Hall A (2004). Cell migration: Rho GTPases lead the way. Dev Biol, 265(1): 23–32

    PubMed  CAS  Article  Google Scholar 

  • Rakic P (1971). Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol, 141(3): 283–312

    CAS  Google Scholar 

  • Rakic P (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol, 145(1): 61–83

    PubMed  CAS  Article  Google Scholar 

  • Randlett O, Poggi L, Zolessi F R, Harris W A (2011). The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron, 70(2): 266–280

    PubMed  CAS  Article  Google Scholar 

  • Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376

    PubMed  CAS  Article  Google Scholar 

  • Ross A J, May-Simera H, Eichers E R, Kai M, Hill J, Jagger D J, Leitch C C, Chapple J P, Munro P M, Fisher S, Tan P L, Phillips H M, Leroux M R, Henderson D J, Murdoch J N, Copp A J, Eliot M M, Lupski J R, Kemp D T, Dollfus H, Tada M, Katsanis N, Forge A, Beales P L (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet, 37(10): 1135–1140

    PubMed  CAS  Article  Google Scholar 

  • Saito T, Nakatsuji N (2001). Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol, 240(1): 237–246

    PubMed  CAS  Article  Google Scholar 

  • Salathe M (2007). Regulation of mammalian ciliary beating. Annu Rev Physiol, 69(1): 401–422

    PubMed  CAS  Article  Google Scholar 

  • Sapir T, Sapoznik S (2008). Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. The Journal of neuroscience, 28(22): 5710–5720

    PubMed  CAS  Article  Google Scholar 

  • Sapir T, Shmueli A (2008). Antagonistic effects of doublecortin and MARK2/Par-1 in the developing cerebral cortex. The Journal of neuroscience, 28(48): 13008–13013

    PubMed  CAS  Article  Google Scholar 

  • Schneider L, Clement C A, Teilmann S C, Pazour G J, Hoffmann E K, Satir P, Christensen S T (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol, 15(20): 1861–1866

    PubMed  CAS  Article  Google Scholar 

  • Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM (2007). LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 129(3): 565–577

    PubMed  CAS  Article  Google Scholar 

  • Shi S-H, Cheng T (2004). APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol, CB 14(22): 2025–2032

    CAS  Article  Google Scholar 

  • Shi S H, Jan L Y, Jan Y N (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112(1): 63–75

    PubMed  CAS  Article  Google Scholar 

  • Shiba D, Yamaoka Y, Hagiwara H, Takamatsu T, Hamada H, Yokoyama T (2009). Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J Cell Sci, 122(Pt 1): 44–54

    PubMed  CAS  Article  Google Scholar 

  • Shoukimas G M, Hinds J W (1978). The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J Comp Neurol, 179(4): 795–830

    PubMed  CAS  Article  Google Scholar 

  • Shu T Z, Ayala R, Nguyen M D, Xie Z, Gleeson J G, Tsai L H (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron, 44(2): 263–277

    PubMed  CAS  Article  Google Scholar 

  • Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Krnig C, Schermer B, Benzing T, Cabello O A, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005). Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet, 37(5): 537–543

    PubMed  CAS  Article  Google Scholar 

  • Spassky N, Han Y G, Aguilar A, Strehl L, Besse L, Laclef C, Ros M R, Garcia-Verdugo J M, Alvarez-Buylla A (2008). Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol, 317(1): 246–259

    PubMed  CAS  Article  Google Scholar 

  • Stiess M, Maghelli N, Kapitein L C, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad C C, Tolić-Nørrelykke I M, Bradke F (2010). Axon extension occurs independently of centrosomal microtubule nucleation. Science, 327(5966): 704–707

    PubMed  CAS  Article  Google Scholar 

  • Stottmann R W, Tran P V, Turbe-Doan A, Beier D R (2009). Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol, 335(1): 166–178

    PubMed  CAS  Article  Google Scholar 

  • Tanaka T, Serneo F F, Higgins C, Gambello M J, Wynshaw-Boris A, Gleeson J G (2004). LIS1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol, 165(5): 709–721

    PubMed  CAS  Article  Google Scholar 

  • Taya S, Shinoda T (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. The Journal of neuroscience, 27(1): 15–26

    PubMed  CAS  Article  Google Scholar 

  • Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K (2007). DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci, 27(1): 15–26

    PubMed  CAS  Article  Google Scholar 

  • Teichmann HM, Shen K (2011). UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons. Nat Neurosci, 14(2): 165–172

    PubMed  CAS  Article  Google Scholar 

  • ten Donkelaar H J, Hoevenaars F, Wesseling P (2000). A case of Joubert’s syndrome with extensive cerebral malformations. Clin Neuropathol, 19(2): 85–93

    PubMed  Google Scholar 

  • Tsai J W, Chen Y, Kriegstein A R, Vallee R B (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol, 170(6): 935–945

    PubMed  CAS  Article  Google Scholar 

  • Tsai L H, Gleeson J G (2005). Nucleokinesis in neuronal migration. Neuron, 46(3): 383–388

    PubMed  CAS  Article  Google Scholar 

  • Umeshima H, Hirano T, Kengaku M (2007). Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA, 104(41): 16182–16187

    PubMed  CAS  Article  Google Scholar 

  • Vergnolle M A S, Taylor S S (2007). Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol, 17(13): 1173–1179

    PubMed  CAS  Article  Google Scholar 

  • Wallingford J B (2010). Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol, 22(5): 597–604

    PubMed  CAS  Article  Google Scholar 

  • Wheatley D N (2005). Landmarks in the first hundred years of primary (9 + 0) cilium research. Cell Biol Int, 29(5): 333–339

    PubMed  CAS  Article  Google Scholar 

  • Wiens C J, Tong Y F, Esmail M A, Oh E, Gerdes J M, Wang J, Tempel W, Rattner J B, Katsanis N, Park H W, Leroux M R (2010). Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem, 285(21): 16218–16230

    PubMed  CAS  Article  Google Scholar 

  • Willaredt M A, Hasenpusch-Theil K, Gardner H A, Kitanovic I, Hirschfeld-Warneken V C, Gojak C P, Gorgas K, Bradford C L, Spatz J, Wlfl S, Theil T, Tucker K L (2008). A crucial role for primary cilia in cortical morphogenesis. J Neurosci, 28(48): 12887–12900

    PubMed  CAS  Article  Google Scholar 

  • Wong K, Ren X R, Huang Y Z, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay S M, Mei L, Wu J Y, Xiong W C, Rao Y (2001). Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell, 107(2): 209–221

    PubMed  CAS  Article  Google Scholar 

  • Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu J Y, Rao Y (1999). Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature, 400(6742): 331–336

    PubMed  CAS  Article  Google Scholar 

  • Xiang X (2003). LIS1 at the microtubule plus end and its role in dyneinmediated nuclear migration. J Cell Biol, 160(3): 289–290

    PubMed  CAS  Article  Google Scholar 

  • Yamada M, Toba S, Yoshida Y, Haratani K, Mori D, Yano Y, Mimori-Kiyosue Y, Nakamura T, Itoh K, Fushiki S, Setou M, Wynshaw-Boris A, Torisawa T, Toyoshima Y Y, Hirotsune S (2008). LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J, 27(19): 2471–2483

    PubMed  CAS  Article  Google Scholar 

  • Ylikorkala A, Rossi D J, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Mkel T P (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science, 293(5533): 1323–1326

    PubMed  CAS  Article  Google Scholar 

  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005). GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 120(1): 137–149

    PubMed  CAS  Article  Google Scholar 

  • Yuan S A L, Li J D, Diener D R, Choma M A, Rosenbaum J L, Sun Z (2012). Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc Natl Acad Sci USA, 109(6): 2021–2026

    PubMed  CAS  Article  Google Scholar 

  • Zaghloul N A, Katsanis N (2009). Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest, 119(3): 428–437

    PubMed  CAS  Article  Google Scholar 

  • Zhang Q H, Seo S, Bugge K, Stone E M, Sheffield V C (2012). BBS proteins interact genetically with the IFT pathway to influence SHHrelated phenotypes. Hum Mol Genet, 21(9): 1945–1953

    PubMed  CAS  Article  Google Scholar 

  • Zmuda J F, Rivas R J (1998). The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil Cytoskeleton, 41(1): 18–38

    PubMed  CAS  Article  Google Scholar 

  • Zmuda J F, Rivas R J (2000). Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro. J Neurobiol, 43(4): 313–328

    PubMed  CAS  Article  Google Scholar 

  • Zolessi F R, Poggi L, Wilkinson C J, Chien C B, Harris W A (2006). Polarization and orientation of retinal ganglion cells in vivo. Neural Dev, 1(1): 2

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Shelly.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, S., Ge, S. & Shelly, M. Centrosome positioning and primary cilia assembly orchestrate neuronal development. Front. Biol. 7, 412–427 (2012). https://doi.org/10.1007/s11515-012-1231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1231-1

Keywords

  • centrosome positioning
  • neuronal polarization/migration
  • primary cilia