Skip to main content
Log in

The adaptive value of increasing pulse repetition rate during hunting by echolocating bats

  • Review
  • Published:
Frontiers in Biology

Abstract

During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bormann J (1988). Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci, 11(3): 112–116

    PubMed  CAS  Google Scholar 

  • Bormann J (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol Sci, 21(1): 16–19

    PubMed  CAS  Google Scholar 

  • Brand A, Urban R, Grothe B (2000). Duration tuning in the mouse auditory midbrain. J Neurophysiol, 84(4): 1790–1799

    PubMed  CAS  Google Scholar 

  • Brosch M, Schreiner C E (1997). Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol, 77(2): 923–943

    PubMed  CAS  Google Scholar 

  • Calford M B, Semple M N (1995). Monaural inhibition in cat auditory cortex. J Neurophysiol, 73(5): 1876–1891

    PubMed  CAS  Google Scholar 

  • Casseday J H, Covey E (1995). Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In: Covey E, Hawkins HL, Port RF (eds). Neural representation of temporal patterns. Plenum, New York, pp 25–51

    Google Scholar 

  • Casseday J H, Ehrlich D, Covey E (1994). Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science, 264(5160): 847–850

    PubMed  CAS  Google Scholar 

  • Casseday J H, Ehrlich D, Covey E (2000). Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. J Neurophysiol, 84(3): 1475–1487

    PubMed  CAS  Google Scholar 

  • Chen G D (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res, 122(1–2): 142–150

    PubMed  CAS  Google Scholar 

  • Chen Q C, Jen P H S (1994). Pulse repetition rate increases the minimum threshold and latency of auditory neurons. Brain Res, 654(1): 155–158

    PubMed  CAS  Google Scholar 

  • Condon C J, White K R, Feng A S (1994). Processing of amplitudemodulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol, 71(2): 768–784

    PubMed  CAS  Google Scholar 

  • Cooper J R, Bloom F E, Roth R H (1982). The Biomedical Basis of Neuropharmacology, New York: Oxford University Press

    Google Scholar 

  • Covey E, Casseday J H (1995). The lower brainstem auditory pathways. In: Popper A N, Fay R R (Eds.), Springer handbook of Auditory Research V5 Hearing by Bats. New York: Springer, pp 235–295

    Google Scholar 

  • Covey E, Casseday J H (1999). Timing in the auditory system of the bat. Annu Rev Physiol, 61(1): 457–476

    PubMed  CAS  Google Scholar 

  • de Ribaupierre F, Goldstein M H Jr, Yeni-Komshian G (1972). Cortical coding of repetitive acoustic pulses. Brain Res, 48: 205–225

    PubMed  Google Scholar 

  • Ehrlich D, Casseday J H, Covey E (1997). Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol, 77(5): 2360–2372

    PubMed  CAS  Google Scholar 

  • Faingold C L, Boersma Anderson C A, Caspary D M (1991). Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons. Hear Res, 52(1): 201–216

    PubMed  CAS  Google Scholar 

  • Faure P A, Fremouw T, Casseday J H, Covey E (2003). Temporal masking reveals properties of sound-evoked inhibition in durationtuned neurons of the inferior colliculus. J Neurosci, 23(7): 3052–3065

    PubMed  CAS  Google Scholar 

  • Feng A S, Condon C J, White K R (1994). Stroboscopic hearing as a mechanism for prey discrimination in frequency-modulated bats? J Acoust Soc Am, 95(5): 2736–2744

    PubMed  CAS  Google Scholar 

  • Feng A S, Hall J C, Gooler D M (1990). Neural basis of sound pattern recognition in anurans. Prog Neurobiol, 34(4): 313–329

    PubMed  CAS  Google Scholar 

  • Freyman R L, Clifton R K, Litovsky R Y (1991). Dynamic processes in the precedence effect. J Acoust Soc Am, 90(2): 874–884

    PubMed  CAS  Google Scholar 

  • Fubara B M, Casseday J H, Covey E, Schwartz-Bloom R D (1996). Distribution of GABAA, GABAB, and glycine receptors in the central auditory system of the big brown bat, Eptesicus fuscus. J Comp Neurol, 369(1): 83–92

    PubMed  CAS  Google Scholar 

  • Fuzessery Z M, Hall J C (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol, 76(2): 1059–1073

    PubMed  CAS  Google Scholar 

  • Fuzessery Z M, Hall J C (1999). Sound duration selectivity in the pallid bat inferior colliculus. Hear Res, 137(1–2): 137–154

    PubMed  CAS  Google Scholar 

  • Fuzessery Z M, Pollak G D (1985). Determinants of sound location selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. J Neurophysiol, 54(4): 757–781

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci, 1(7): 587–594

    PubMed  CAS  Google Scholar 

  • Galazyuk A V, Feng A S (1997). Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 180(4): 301–311

    CAS  Google Scholar 

  • Galazyuk A V, Llano D, Feng A S (2000). Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol, 83(1): 128–138

    PubMed  CAS  Google Scholar 

  • Glendenning K K, Baker B N, Hutson K A, Masterton R B (1992). Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. J Comp Neurol, 319(1): 100–122

    PubMed  CAS  Google Scholar 

  • Gooler D M, Feng A S (1992). Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol, 67(1): 1–22

    PubMed  CAS  Google Scholar 

  • Griffin D R (1958) Listening in the Dark. Yale University Press, New Haven, CT (reprinted by Comstock, Ithaca, 1986

    Google Scholar 

  • Grinnell A D (1963). The neurophysiology of audition in bats: directional localization and binaural. J Physiol, (Lond) 167: 97–113

    CAS  Google Scholar 

  • Grinnell A D, Grinnell V S (1965). Neural correlates of vertical localization by echolocating bats. J Physiol, (Lond) 181:830–851

    CAS  Google Scholar 

  • Grothe B, Covey E, Casseday J H (1996). Spatial tuning of neurons in the inferior colliculus of the big brown bat: effects of sound level, stimulus type and multiple sound sources. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 179(1): 89–102

    CAS  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985). Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol, 53(1): 89–109

    PubMed  CAS  Google Scholar 

  • Hartley D J (1992a). Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. J Acoust Soc Am, 91(2): 1120–1132

    PubMed  CAS  Google Scholar 

  • Hartley D J (1992b). Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. J Acoust Soc Am, 91(2): 1133–1149

    PubMed  CAS  Google Scholar 

  • He J F, Hashikawa T, Ojima H, Kinouchi Y (1997). Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci, 17(7): 2615–2625

    PubMed  CAS  Google Scholar 

  • Henson O W Jr (1965). The Activity and Function of the Middle Ear Muscles in Eecholocating Bats. J Physiol, (London) 180: 871–887

    Google Scholar 

  • Henson O W Jr (1970). The ear and audition. In: Biology of bats, Vol. II (ed. W.A. Wimsatt), pp. 181–264. New York: Academic Press

    Google Scholar 

  • Hiryu S, Hagino T, Riquimaroux H, Watanabe Y (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. J Acoust Soc Am, 121(3): 1749–1757

    PubMed  Google Scholar 

  • Hocherman S, Gilat E (1981). Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. J Neurophysiol, 45(6): 987–997

    PubMed  CAS  Google Scholar 

  • Hou T T, Wu M, Jen P H S (1992). Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chin J Physiol, 35(4): 259–278

    PubMed  CAS  Google Scholar 

  • Jen P H S (1980). Coding of directional information by single neurones in the S-segment of the FM bat, Myotis lucifugus. J Exp Biol, 87: 203–216

    PubMed  CAS  Google Scholar 

  • Jen P H S, Chen Q C (1998). The effect of pulse repetition rate, pulse intensity, and bicuculline on the minimum threshold and latency of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 182(4): 455–465

    CAS  Google Scholar 

  • Jen P H S, Feng R, Chen B (2003). GABAergic inhibition and the effect of sound direction on rate-intensity functions of inferior collicular neurons of the big brown Bat, Eptesicus fuscus. Chin J Physiol, 46(2): 83–90

    PubMed  CAS  Google Scholar 

  • Jen P H S, Feng R B (1999). Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 184(2): 185–194

    CAS  Google Scholar 

  • Jen P H S, Hou T T, Wu M (1993). Neurons in the inferior colliculus, auditory cortex and pontine nuclei of the FM bat, Eptesicus fucus respond to pulse repetition rate differently. Brain Res, 613(1): 152–155

    PubMed  CAS  Google Scholar 

  • Jen P H S, Kamada T (1982). Analysis of orientation signals emitted by the CF-FM bat, Pteronotus parnellii parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol, 148(3): 389–398

    Google Scholar 

  • Jen P H S, Ostwald J, Suga N (1978). Electrophysiological properties of the acoustic middle ear and laryngeal muscles reflexes in the awake echolocating FM bats, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 124(1): 61–73

    Google Scholar 

  • Jen P H S, Schlegel P (1982). Auditory physiological properties of the neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol, 147(3): 351–363

    Google Scholar 

  • Jen P H S, Suga N (1976). Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science, 191(4230): 950–952

    PubMed  CAS  Google Scholar 

  • Jen P H S, Sun X D (1984). Pinna orientation determines the maximal directional sensitivity of bat auditory neurons. Brain Res, 301(1): 157–161

    PubMed  CAS  Google Scholar 

  • Jen P H S, Sun X D, Chen D M, Teng H B (1987). Auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Brain Res, 419(1–2): 7–18

    PubMed  CAS  Google Scholar 

  • Jen P H S, Sun X D, Lin P J (1989). Frequency and space representation in the primary auditory cortex of the FM bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 165: 1–14

    CAS  Google Scholar 

  • Jen P H S, Wu C H (2005). The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences. Hear Res, 202(1–2): 222–234

    PubMed  CAS  Google Scholar 

  • Jen P H S, Wu C H, Luan R H, Zhou XM (2002). GABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Res, 948(1–2): 159–164

    PubMed  CAS  Google Scholar 

  • Jen P H S, Wu M (1993). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, to sounds delivered from selected horizontal and vertical angles. Chin J Physiol, 36(1): 7–18

    PubMed  CAS  Google Scholar 

  • Jen P H S, Zhang J (2000). The role of GABAergic inhibition on direction-dependent sharpening of frequency tuning in bat inferior collicular neurons. Brain Res, 862(1–2): 127–137

    PubMed  CAS  Google Scholar 

  • Jen P H S, Zhou X M (1999). Temporally patterned pulse trains affect duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 185(5): 471–478

    CAS  Google Scholar 

  • Jen P H S, Zhou XM, Wu C H (2001). Temporally patterned pulse trains affect frequency tuning and intensity coding of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 187: 605–616

    CAS  Google Scholar 

  • Kick S A, Simmons J A (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci, 4(11): 2725–2737

    PubMed  CAS  Google Scholar 

  • Klug A, Park T J, Pollak G D (1995). Glycine and GABA influence binaural processing in the inferior colliculus of the mustache bat. J Neurophysiol, 74(4): 1701–1713

    PubMed  CAS  Google Scholar 

  • Kobler J B, Wilson B S, Henson O W Jr, Bishop A L (1985). Echo intensity compensation by echolocating bats. Hear Res, 20(2): 99–108

    PubMed  CAS  Google Scholar 

  • Koch U, Grothe B (1998). GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. J Neurophysiol, 80(1): 71–82

    PubMed  CAS  Google Scholar 

  • Lawrence B D, Simmons J A (1982). Echolocation in bats: the external ear and perception of the vertical positions of targets. Science, 218(4571): 481–483

    PubMed  CAS  Google Scholar 

  • Le Beau F E, Rees A, Malmierca M S (1996). Contribution of GABAand glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol, 75(2): 902–919

    PubMed  Google Scholar 

  • LeBeau F E, Malmierca M S, Rees A (2001). Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci, 21(18): 7303–7312

    PubMed  CAS  Google Scholar 

  • Litovsky R Y, Yin T C (1998). Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol, 80(3): 1302–1316

    PubMed  CAS  Google Scholar 

  • Lu Y, Jen P H S (2001). GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res, 141(3): 331–339

    PubMed  CAS  Google Scholar 

  • Lu Y, Jen P H S (2002). Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hear Res, 169(1–2): 140–150

    PubMed  Google Scholar 

  • Lu Y, Jen P H S, Wu M (1998). GABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses. J Neurophysiol, 79(5): 2303–2315

    PubMed  CAS  Google Scholar 

  • Lu Y, Jen P H S, Zheng Q Y (1997). GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 181(4): 331–341

    CAS  Google Scholar 

  • Malmierca M S, Leergaard T B, Bajo V M, Bjaalie J G, Merchan M A (1998). Anatomic evidence of a 3-D mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci, 18: 10603–10618

    PubMed  CAS  Google Scholar 

  • Masters W M, Moffat A J M, Simmons J A (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science, 228(4705): 1331–1333

    PubMed  CAS  Google Scholar 

  • McAlpine D, Palmer A R (2002). Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci, 22(4): 1443–1453

    PubMed  CAS  Google Scholar 

  • Moriyama T, Hou T T, Wu M, Jen P H S (1994). Responses of inferior collicular neurons of the FM bat, Eptesicus fuscus, to pulse trains with varied pulse amplitudes. Hear Res, 79(1–2): 105–114

    PubMed  CAS  Google Scholar 

  • Moriyama T, Wu M I, Jen P H S (1997). Responses of bat inferior collicular neurons to recorded echolocation pulse trains. Chin J Physiol, 40(1): 9–17

    PubMed  CAS  Google Scholar 

  • Narins P M, Capranica R R (1980). Neural adaptation for processing the two-tone call of the Puerto Rican tree frog, Eleuthereodactylus coqui. Brain Behav Evol, 18(1): 48–66

    Google Scholar 

  • Novick A (1971). Echolocation in bats: some aspects of pulse design. Am Sci, 59(2): 198–209

    PubMed  CAS  Google Scholar 

  • Novick A, Griffin D R (1961). Laryngeal mechanisms in bats for the production of orientation sounds. J Exp Zool, 148(2): 125–145

    PubMed  CAS  Google Scholar 

  • Oliver D L, Shneiderman A (1991). The anatomy of the inferior colliculus: a cellular basis for integration of monaural and binaural information. In: Altschuler R A, Bobbin R P, Clopton B M, Hoffmann D W (Eds), Neurobiology of Hearing pp195–222, New York: Raven

    Google Scholar 

  • Oliver D L, Winer J A, Beckius G E, Saint Marie R L (1994). Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol, 340(1): 27–42

    PubMed  CAS  Google Scholar 

  • Park T J, Pollak G D (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J Neurosci, 13(5): 2050–2067

    PubMed  CAS  Google Scholar 

  • Park T J, Pollak G D (1994). Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. J Neurophysiol, 72(3): 1080–1102

    PubMed  CAS  Google Scholar 

  • Pérez-González D, Malmierca M S, Moore J M, Hernández O, Covey E (2006). Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. J Neurophysiol, 95(2): 823–836

    PubMed  Google Scholar 

  • Perkins K L, Wong R K (1997). The depolarizing GABA response. Can J Physiol Pharmacol, 75(5): 516–519

    PubMed  CAS  Google Scholar 

  • Phillips D P, Hall S E, Hollett J L (1989). Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J Acoust Soc Am, 85(6): 2537–2549

    PubMed  CAS  Google Scholar 

  • Pinheiro A D, Wu M, Jen P H S (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 169(1): 69–85

    CAS  Google Scholar 

  • Popper A N, Fay R R (1995). Hearing by bats. New York: Springer

    Google Scholar 

  • Rabow L E, Russek S J, Farb D H (1995). From ion currents to genomic analysis: recent advances in GABA-R research. Synapse, 21(3): 174–189

    Google Scholar 

  • Roberts R C, Ribak C E (1987a). An electron microscopic study of GABAergic neurons and terminals in the central nucleus of the inferior colliculus of the rat. J Neurocytol, 16(3): 333–345

    PubMed  CAS  Google Scholar 

  • Roberts R C, Ribak C E (1987b). GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol, 258(2): 267–280

    PubMed  CAS  Google Scholar 

  • Roverud R C (1989). A gating mechanism for sound pattern recognition is correlated with the temporal structure of echolocation sound in the rufous horseshoe bat. J Comp Physiol, 166(2): 243–249

    Google Scholar 

  • Roverud R C, Grinnell A D (1985). Discrimination performance and echolocation signal integration requirements for target detection and distance discrimination in the CF/FM bat, Noctilio albiventris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 156(4): 447–456

    Google Scholar 

  • Saint Marie R L, Morest D K, Brandon C J (1989). The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res, 42(1): 97–112

    PubMed  CAS  Google Scholar 

  • Schlegel P A (1977). Directional coding by binaural brainstem units of the CF-FM bat Rhinolophus ferrumequinum. J Comp Physiol, 118(3): 327–352

    Google Scholar 

  • Schlegel P A, Jen P H S, Singh S (1988). Auditory spatial sensitivity of inferior collicular neurons of echolocating bats. Brain Res, 456(1): 127–138

    PubMed  CAS  Google Scholar 

  • Schnitzler H U, Grinnell A D (1977). Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum I. Directionality of sound emission. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 116(1): 51–61

    Google Scholar 

  • Schnitzler H U, Henson O W (1980). Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 109–182

    Google Scholar 

  • Shannon R V, Zeng F G, Kamath V, Wygonski J, Ekelid M (1995). Speech recognition with primary temporal cues. Science (USA), 270: 303–304

    CAS  Google Scholar 

  • Shimozawa T, Suga N, Hendler P, Schuetze S (1974). Directional sensitivity of echolocation system in bats producing frequencymodulated signals. J Exp Biol, 60(1): 53–69

    PubMed  CAS  Google Scholar 

  • Simmons J A, Fenton M B, O’Farrell M J (1979). Echolocation and pursuit of prey by bats. Science, 203(4375): 16–21

    PubMed  CAS  Google Scholar 

  • Simmons J A, Kick S A, Lawrence B D, Hale C, Bard C, Escudie B (1983). Acuity of horizontal angle discrimination by the echolocatingbat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 153: 321–330

    Google Scholar 

  • Simmons J A, Moffat A J, Masters W M (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am, 91(2): 1150–1163

    PubMed  CAS  Google Scholar 

  • Smalling J M, Galazyuk A V, Feng A S (2001). Stimulation rate influences frequency tuning characteristics of inferior colliculus neurons in the little brown bat, Myotis lucifugus. Neuroreport, 12(16): 3539–3542

    PubMed  CAS  Google Scholar 

  • Smotherman M, Metzner W (2003). Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats. J Neurophysiol, 89(2): 814–821

    PubMed  Google Scholar 

  • Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. J Physiol, (Lond) 172:449–474

    CAS  Google Scholar 

  • Suga N (1997) Parallel-hierarchical processing of complex sounds for specialized auditory function. In: Crocker MJ (Ed) Encyclopedia of Acoustics, New York, John Wiley & Sons, Inc. pp 1409–1418

    Google Scholar 

  • Suga N, Jen P H S (1975). Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol, 62(2): 277–311

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1972). Neural attenuation of responses to emitted sounds in echolocating bat. Science (USA), 177: 82–84

    CAS  Google Scholar 

  • Suga N, Shimozawa T (1974). Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science, 183(130): 1211–1213 (USA)

    PubMed  CAS  Google Scholar 

  • Suga N, Yan J, Zhang Y F (1998) The processing of species-specific complex sounds by the ascending and descending auditory systems. In Poon P, Bruggie J (Eds), Central Auditory Processing and Neural Modeling. New York: Plenum Press, pp 55–70

    Google Scholar 

  • Sun X D, Jen P H S (1987). Pinna position affects the auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Hear Res, 27(3): 207–219

    PubMed  CAS  Google Scholar 

  • Surlykke A, Moss C F (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am, 108(5): 2419–2429

    PubMed  CAS  Google Scholar 

  • Vater M, Habbicht H, Kössl M, Grothe B (1992). The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 171(4): 541–553

    CAS  Google Scholar 

  • Wallach H, Newman E B, Rosenzweig M R (1949). The precedence effect in sound localization. Am J Psychol, 62(3): 315–336

    PubMed  CAS  Google Scholar 

  • Wu C H, Jen P H S (2006a). GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 192(9): 985–1002

    PubMed  CAS  Google Scholar 

  • Wu C H, Jen P H S (2006b). The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound trains. Hear Res, 215(1–2): 56–66

    PubMed  CAS  Google Scholar 

  • Wu C H, Jen P H S (2008). Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs. Neuroscience, 156(4): 1028–1038

    PubMed  CAS  Google Scholar 

  • Wu L G, Betz W J (1998). Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J, 74(6): 3003–3009

    PubMed  CAS  Google Scholar 

  • Wu M, Hou E T t, Jen P H S (1996). Responses of bat inferior collicular and auditory cortical neurons to pulsatile amplitude modulated sound pulses. Chin J Physiol, 39(3): 1–7

    Google Scholar 

  • Wu M, Jen P H S (1991). Encoding of acoustic stimulus intensity by inferior collicular neurons of the big brown bat, Eptesicus fuscus. Chin J Physiol, 34: 145–155

    PubMed  CAS  Google Scholar 

  • Wu M, Jen P H S (1995b). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with temporally varied sound pulses. Le Rhinolophe, 11: 75–81

    Google Scholar 

  • Wu M, Jen P H S (1996). Temporally patterned sound pulses affect directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 179(3): 385–393

    CAS  Google Scholar 

  • Wu M I, Jen P H S (1995a). Responses of pontine neurons of the big brown bat, Eptesicus fuscus, to temporally patterned sound pulses. Hear Res, 85(1–2): 155–168

    PubMed  CAS  Google Scholar 

  • Yang L, Pollak G D, Resler C (1992). GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol, 68(5): 1760–1774

    PubMed  CAS  Google Scholar 

  • YostW A, Guzman S J (1996). Auditory processing of sound sources: Is there an echo in here? Curr Dir Psychol Sci, 5(4): 125–131

    Google Scholar 

  • Yost W A, Soderquist D R (1984). The precedence effect: revisited. J Acoust Soc Am, 76(5): 1377–1383

    PubMed  CAS  Google Scholar 

  • Zhang H, Xu J, Feng A S (1999). Effects of GABA-mediated inhibition on direction-dependent frequency tuning in the frog inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 184(1): 85–98

    CAS  Google Scholar 

  • Zhou X M, Jen P H S (2000). Neural inhibition sharpens auditory spatial sensitivity of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 186(4): 389–398

    CAS  Google Scholar 

  • Zhou X M, Jen P H S (2001). The effect of sound intensity on durationtuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 187(1): 63–73

    CAS  Google Scholar 

  • Zhou X M, Jen P H S (2002a). The effect of sound duration on rateamplitude functions of inferior collicular neurons in the big brown bat, Eptesicus fuscus. Hear Res, 166(1–2): 124–135

    PubMed  Google Scholar 

  • Zhou X M, Jen P H S (2002b). The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned pulse trains. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 188(10): 815–826

    PubMed  CAS  Google Scholar 

  • Zhou X M, Jen P H S (2003). The effect of bicuculline application on azimuth-dependent recovery cycle of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Brain Res, 973(1): 131–141

    PubMed  CAS  Google Scholar 

  • Zhou X M, Jen P H S (2004). Azimuth-dependent recovery cycle affects directional selectivity of bat inferior collicular neurons determined with sound pulses within a pulse train. Brain Res, 1019(1–2): 281–288

    PubMed  CAS  Google Scholar 

  • Zhou X M, Jen P H S (2006). Duration selectivity of bat inferior collicular neurons improves with increasing pulse repetition rate. Chin J Physiol, 49(1): 46–55

    PubMed  Google Scholar 

  • Zucker R S (1989). Short-term synaptic plasticity. Annu Rev Neurosci, 12(1): 13–31

    PubMed  CAS  Google Scholar 

  • Zurek P M (1980). The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am, 67(3): 953–964

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. -S. Jen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jen, P.H.S. The adaptive value of increasing pulse repetition rate during hunting by echolocating bats. Front. Biol. 8, 198–215 (2013). https://doi.org/10.1007/s11515-012-1212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1212-4

Keywords

Navigation