Frontiers in Biology

, Volume 8, Issue 2, pp 234–246

Biomineralization proteins: from vertebrates to bacteria



Biomineralization processes are frequently found in nature. Living organisms use various strategies to create highly ordered and hierarchical mineral structures under physiologic conditions in which the temperatures and pressures are much lower than those required to form the same mineralized structures by chemical synthesis. Although the mechanism of biomineralization remains elusive, proteins have been found responsible for the formation of such mineral structures in many cases. These proteins are active components in the process of biomineralization. The mechanisms by which their function can vary from providing active organic matrices that control the formation of specific mineral structures to being catalysts that facilitate the crystallization of certain metal ions. This review summarizes the current understanding of the functions of several representative biomineralization proteins from vertebrates to bacteria in the hopes of providing useful insight and guidance for further elucidation of mechanisms of biomineralization processes in living organisms.


biomineralization proteins structure-function relationships self-assembly nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA, 82(12): 4110–4114PubMedCrossRefGoogle Scholar
  2. Aichmayer B, Margolis H C, Sigel R, Yamakoshi Y, Simmer J P, Fratzl P (2005). The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol, 151(3): 239–249PubMedCrossRefGoogle Scholar
  3. Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T (2007). Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials, 28(35): 5381–5389PubMedCrossRefGoogle Scholar
  4. Arakaki A, Webb J, Matsunaga T (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem, 278(10): 8745–8750PubMedCrossRefGoogle Scholar
  5. Balkwill D L, Maratea D, Blakemore R P (1980). Ultrastructure of a magnetotactic spirillum. J Bacteriol, 141(3): 1399–1408PubMedGoogle Scholar
  6. Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2(3): 217–230PubMedCrossRefGoogle Scholar
  7. Bell P E, Mills A L, Herman J S (1987). Biogeochemical donditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol, 53(11): 2610–2616PubMedGoogle Scholar
  8. Berthet-Colominas C, Miller A, White S W (1979). Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol, 134(3): 431–445PubMedCrossRefGoogle Scholar
  9. Blakemore R (1975). Magnetotactic bacteria. Science, 190(4212): 377–379PubMedCrossRefGoogle Scholar
  10. Blakemore R P, Maratea D, Wolfe R S (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol, 140(2): 720–729PubMedGoogle Scholar
  11. Bonucci E (2009). Calcification and silicification: a comparative survey of the early stages of biomineralization. J Bone Miner Metab, 27(3): 255–264PubMedCrossRefGoogle Scholar
  12. Brinker C J, Scherrer G W (1990). Sol-gel science: the chemistry of solgel processing. New York: Academic PressGoogle Scholar
  13. Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009). Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol, 84(4): 607–616PubMedCrossRefGoogle Scholar
  14. Brutchey R L, Cheng G, Gu Q, Morse D E (2008). Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Adv Mater, 20(5): 1029–1033CrossRefGoogle Scholar
  15. Brutchey R L, Morse D E (2006). Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bioinspired conditions. Angew Chem Int Ed Engl, 45(39): 6564–6566PubMedCrossRefGoogle Scholar
  16. Brutchey R L, Morse D E (2008). Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev, 108(11): 4915–4934PubMedCrossRefGoogle Scholar
  17. Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA, 96(2): 361–365PubMedCrossRefGoogle Scholar
  18. Chen C L, Bromley K M, Moradian-Oldak J, DeYoreo J J (2011). In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc, 133(43): 17406–17413PubMedCrossRefGoogle Scholar
  19. Cölfen H (2010). Biomineralization: A crystal-clear view. Nat Mater, 9 (12): 960–961PubMedCrossRefGoogle Scholar
  20. Cowan P M, McGavin S, North A C T (1955). The polypeptide chain configuration of collagen. Nature, 176(4492): 1062–1064PubMedCrossRefGoogle Scholar
  21. Crookes-Goodson W J, Slocik J M, Naik R R (2008). Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev, 37(11): 2403–2412PubMedCrossRefGoogle Scholar
  22. Daculsi G, Kerebel B (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res, 65(2): 163–172PubMedCrossRefGoogle Scholar
  23. Dey A, Bomans P H H, Müller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater, 9(12): 1010–1014PubMedCrossRefGoogle Scholar
  24. Diekwisch T G H, Berman B J, Gentner S, Slavkin H C (1995). Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res, 279(1): 149–167PubMedCrossRefGoogle Scholar
  25. Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005a). Corrections and clarifications. Science, 309(5744): 2166Google Scholar
  26. Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005b). Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 307(5714): 1450–1454PubMedCrossRefGoogle Scholar
  27. Dugdale R C, Wilkerson F P (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391(6664): 270–273CrossRefGoogle Scholar
  28. Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Pósfai M, Buseck P R (1998). Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 282(5395): 1868–1870PubMedCrossRefGoogle Scholar
  29. Eastoe J E (1979). Enamel protein chemistry—past, present and future. J Dent Res, 58(Spec Issue B suppl): 753–764PubMedGoogle Scholar
  30. Evans J W, Thiel P A (2010). Chemistry. A little chemistry helps the big get bigger. Science, 330(6004): 599–600PubMedCrossRefGoogle Scholar
  31. Faivre D, Böttger L H, Matzanke B F, Schüler D (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed Engl, 46(44): 8495–8499PubMedCrossRefGoogle Scholar
  32. Faivre D, Schüler D (2008). Magnetotactic bacteria and magnetosomes. Chem Rev, 108(11): 4875–4898PubMedCrossRefGoogle Scholar
  33. Falciatore A, Bowler C (2002). Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol, 53(1): 109–130PubMedCrossRefGoogle Scholar
  34. Fincham A G, Leung W, Tan J and Moradian-Oldak J (1998). Does amelogenin nanosphere assembly proceed through intermediarysized structures? Connect Tissue Res, 38(1–4): 237–240; discussion 241–236PubMedCrossRefGoogle Scholar
  35. Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu DM, Wright J T, Bringas P Jr, Slavkin H C (1995). Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol, 115(1): 50–59PubMedCrossRefGoogle Scholar
  36. Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol, 112(2): 103–109PubMedCrossRefGoogle Scholar
  37. Frankel R B, Bazylinski D A, Johnson M S, Taylor B L (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys J, 73(2): 994–1000PubMedCrossRefGoogle Scholar
  38. Frankel R B, Blakemore R P, Wolfe R S (1979). Magnetite in freshwater magnetotactic bacteria. Science, 203(4387): 1355–1356PubMedCrossRefGoogle Scholar
  39. Friddle RW, Battle K, Trubetskoy V, Tao J, Salter E A, Moradian-Oldak J, De Yoreo J J, Wierzbicki A (2011). Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew Chem Int Ed Engl, 50(33): 7541–7545PubMedCrossRefGoogle Scholar
  40. Glimcher M J (1959). Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys, 31(2): 359–393CrossRefGoogle Scholar
  41. Glimcher M J, Bonar L C, Grynpas M D, Landis W J, Roufosse A H (1981). Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? J Cryst Growth, 53(1): 100–119CrossRefGoogle Scholar
  42. Gorby Y A, Beveridge T J, Blakemore R P (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol, 170(2): 834–841PubMedGoogle Scholar
  43. Gorski J P (1992). Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int, 50 (5): 391–396PubMedCrossRefGoogle Scholar
  44. Gower L B (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev, 108(11): 4551–4627PubMedCrossRefGoogle Scholar
  45. Grynpas M D, Omelon S (2007). Transient precursor strategy or very small biological apatite crystals? Bone, 41(2): 162–164PubMedCrossRefGoogle Scholar
  46. Hildebrand M (2003). Biological processing of nanostructured silica in diatoms. Prog Org Coat, 47(3–4): 256–266CrossRefGoogle Scholar
  47. Hildebrand M (2008). Diatoms, biomineralization processes, and genomics. Chem Rev, 108(11): 4855–4874PubMedCrossRefGoogle Scholar
  48. Hodge A, Petruska J (1963). Aspects of Protein Structure. New York: Academic PressGoogle Scholar
  49. Hulmes D J, Wess T J, Prockop D J, Fratzl P (1995). Radial packing, order, and disorder in collagen fibrils. Biophys J, 68(5): 1661–1670PubMedCrossRefGoogle Scholar
  50. Kaluzhnaya O, Belikova A, Podolskaya E, Krasko A, Müller W, Belikov S (2007). Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol Biol, 41(4): 554–561CrossRefGoogle Scholar
  51. Katz E P, Li S T (1973). Structure and function of bone collagen fibrils. J Mol Biol, 80(1): 1–15PubMedCrossRefGoogle Scholar
  52. Kisailus D, Truong Q, Amemiya Y, Weaver J C, Morse D E (2006). Selfassembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA, 103(15): 5652–5657PubMedCrossRefGoogle Scholar
  53. Komeili A (2007). Molecular mechanisms of magnetosome formation. Annu Rev Biochem, 76(1): 351–366PubMedCrossRefGoogle Scholar
  54. Komeili A (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev, 36(1): 232–255PubMedCrossRefGoogle Scholar
  55. Krasko A, Lorenz B, Batel R, Schröder H C, Müller I M, Müller W E G (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem, 267(15): 4878–4887PubMedCrossRefGoogle Scholar
  56. Krasko A, Schröder H C, Batel R, Grebenjuk V A, Steffen R, Müller IM, Müller W E G (2002). Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol, 21(1): 67–80PubMedCrossRefGoogle Scholar
  57. Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107PubMedCrossRefGoogle Scholar
  58. Landis W J, Silver F H (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189(1–4): 20–24PubMedCrossRefGoogle Scholar
  59. Levi C, Barton J L, Guillemet C, Bras E, Lehuede P (1989). A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett, 8(3): 337–339CrossRefGoogle Scholar
  60. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA, 107(14): 6316–6321PubMedCrossRefGoogle Scholar
  61. Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem, 8(14): 1729–1735PubMedCrossRefGoogle Scholar
  62. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res, 12(3): 157–166PubMedCrossRefGoogle Scholar
  63. Miller A and Parker S B (1984). Collagen: The organic matrix of bone. Philos Trans R Soc, B 304(1121): 455–477CrossRefGoogle Scholar
  64. Moradian-Oldak J (2001). Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol, 20(5–6): 293–305PubMedCrossRefGoogle Scholar
  65. Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N (2002). Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol, 21(2): 197–205PubMedCrossRefGoogle Scholar
  66. Moradian-Oldak J, Du C, Falini G (2006). On the formation of amelogenin microribbons. Eur J Oral Sci, 114(s1 Suppl 1): 289–296, discussion 327–329, 382PubMedCrossRefGoogle Scholar
  67. Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G (2001). Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers, 58(7): 606–616PubMedCrossRefGoogle Scholar
  68. Moradian-Oldak J, Paine M L, Lei Y P, Fincham A G, Snead M L (2000). Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol, 131(1): 27–37PubMedCrossRefGoogle Scholar
  69. Müller W E G, Boreiko A, Schlossmacher U, Wang X, Tahir M N, Tremel W, Brandt D, Kaandorp J A, Schröder H C (2007). Fractalrelated assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials, 28(30): 4501–4511PubMedCrossRefGoogle Scholar
  70. Murat D, Byrne M, Komeili A (2010a). Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol, 2(10): a000422PubMedCrossRefGoogle Scholar
  71. Murat D, Quinlan A, Vali H, Komeili A (2010b). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA, 107(12): 5593–5598PubMedCrossRefGoogle Scholar
  72. Murr MM, Morse D E (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA, 102(33): 11657–11662PubMedCrossRefGoogle Scholar
  73. Nies D H (2011). How iron is transported into magnetosomes. Mol Microbiol, 82(4): 792–796PubMedCrossRefGoogle Scholar
  74. Nudelman F, Pieterse K, George A, Bomans P H, Friedrich H, Brylka L J, Hilbers P A, de With G, Sommerdijk N A (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater, 9(12): 1004–1009PubMedCrossRefGoogle Scholar
  75. Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P (1984). Magnetosome dynamics in magnetotactic bacteria. Biophys J, 46(1): 57–64PubMedCrossRefGoogle Scholar
  76. Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y-Y, Kaufman M J, Douglas E P and Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng, R 58(3–5): 77–116CrossRefGoogle Scholar
  77. Pascal J L, Clementine G, Jacques L, Thibaud C (2005). Mimicking biogenic silica nanostructures formation. Curr Nanosci, 1(1): 73–83CrossRefGoogle Scholar
  78. Penninga I, de Waard H, Moskowitz B M, Bazylinski D A, Frankel R B (1995). Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater, 149(3): 279–286CrossRefGoogle Scholar
  79. Piez K A (1965). Characterization of a collagen from codfish skin containing three chromatographically different α chains. Biochemistry, 4(12): 2590–2596PubMedCrossRefGoogle Scholar
  80. Piez K A, Lewis M S, Martin G R, Gross J (1961). Subunits of the collagen molecule. Biochim Biophys Acta, 53(3): 596–598PubMedCrossRefGoogle Scholar
  81. Posner A S, Betts F (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res, 8(8): 273–281CrossRefGoogle Scholar
  82. Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A M, Raheli F, Benatti U, Müller WEG, Giovine M (2004). Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY), 6(6): 594–603CrossRefGoogle Scholar
  83. Prozorov T, Mallapragada S, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams T, Bazylinski D, Prozorov R, Canfield P (2007a). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater, 17(6): 951–957CrossRefGoogle Scholar
  84. Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007b). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1(3): 228–233PubMedCrossRefGoogle Scholar
  85. Rabuffetti F A, Lee J S, Brutchey R L (2012). Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv Mater, 24(11): 1434–1438PubMedCrossRefGoogle Scholar
  86. Ramachandran G N, Kartha G (1955). Structure of collagen. Nature, 176(4482): 593–595PubMedCrossRefGoogle Scholar
  87. Rich A, Crick F H C (1955). The structure of collagen. Nature, 176(4489): 915–916PubMedCrossRefGoogle Scholar
  88. Richter M, Kube M, Bazylinski D A, Lombardot T, Glöckner F O, Reinhardt R, Schüler D (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol, 189(13): 4899–4910PubMedCrossRefGoogle Scholar
  89. Schröder H C, PeroviĆ-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller I M, Müller W E G (2004a). Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J, 381(Pt 3): 665–673PubMedGoogle Scholar
  90. Schröder H C, PeroviĆ-Ottstadt S, Wiens M, Batel R, Müller I M, Müller WE (2004b). Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res, 316(2): 271–280PubMedCrossRefGoogle Scholar
  91. Schüler D (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev, 32(4): 654–672PubMedCrossRefGoogle Scholar
  92. Shaw W J, Campbell A A, Paine M L, Snead M L (2004). The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem, 279(39): 40263–40266PubMedCrossRefGoogle Scholar
  93. Shimizu K, Cha J, Stucky G D, Morse D E (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA, 95(11): 6234–6238PubMedCrossRefGoogle Scholar
  94. Simmer J P, Fincham A G (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med, 6(2): 84–108PubMedCrossRefGoogle Scholar
  95. Simpson T L (1984). The cell biology of sponges. New York: Springer PublishingCrossRefGoogle Scholar
  96. Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007). Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc Natl Acad Sci USA, 104(49): 19524–19528PubMedCrossRefGoogle Scholar
  97. Stöber W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26(1): 62–69CrossRefGoogle Scholar
  98. Sumper M, Brunner E (2006). Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv Funct Mater, 16(1): 17–26CrossRefGoogle Scholar
  99. Tacke R (1999). Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int Ed Engl, 38(20): 3015–3018PubMedCrossRefGoogle Scholar
  100. Tanaka M, Mazuyama E, Arakaki A, Matsunaga T (2011). MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J Biol Chem, 286(8): 6386–6392PubMedCrossRefGoogle Scholar
  101. Tarasevich B J, Lea S, Bernt W, Engelhard M, Shaw W J (2009). Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B, 113(7): 1833–1842PubMedCrossRefGoogle Scholar
  102. Tarasevich B J, Lea S, Shaw W J (2010). The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol, 169(3): 266–276PubMedCrossRefGoogle Scholar
  103. Termine J D, Kleinman H K, Whitson S W, Conn K M, McGarvey M L, Martin G R (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26(1 Pt 1): 99–105PubMedCrossRefGoogle Scholar
  104. Termine J D, Posner A S (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science, 153(3743): 1523–1525PubMedCrossRefGoogle Scholar
  105. Thiel P A, Shen M, Liu D J, Evans J W (2009). Coarsening of twodimensional nanoclusters on metal surfaces. J Phys Chem C, 113(13): 5047–5067CrossRefGoogle Scholar
  106. Traub W, Arad T, Weiner S (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 86(24): 9822–9826PubMedCrossRefGoogle Scholar
  107. Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko J M, Zarivach R, Kasama T, Wanner G, Pósfai M, Böttger L, Matzanke B, Schüler D (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol, 82(4): 818–835PubMedCrossRefGoogle Scholar
  108. Wang L, Prozorov T, Palo P E, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2012a). Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules, 13(1): 98–105PubMedCrossRefGoogle Scholar
  109. Wang W, Bu W, Wang L, Palo P E, Mallapragada S, Nilsen-Hamilton M, Vaknin D (2012b). Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir, 28(9): 4274–4282PubMedCrossRefGoogle Scholar
  110. Weaver J C, Morse D E (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech, 62(4): 356–367PubMedCrossRefGoogle Scholar
  111. Weiner S (2006). Transient precursor strategy in mineral formation of bone. Bone, 39(3): 431–433PubMedCrossRefGoogle Scholar
  112. Weiner S (2008). Biomineralization: a structural perspective. J Struct Biol, 163(3): 229–234PubMedCrossRefGoogle Scholar
  113. Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256PubMedCrossRefGoogle Scholar
  114. Wheeler E J, Lewis D (1977). An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res, 24(3): 243–248PubMedCrossRefGoogle Scholar
  115. Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077): 61–64PubMedCrossRefGoogle Scholar
  116. Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin H C (1995). Control of ameloblast differentiation. Int J Dev Biol, 39(1): 69–92PubMedGoogle Scholar
  117. Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E (1999). Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed Engl, 38(6): 779–782CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ames Laboratory, U. S. Department of Energy, Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesUSA

Personalised recommendations