Abstract
The serine/threonine-specific protein kinase AKT is gaining recognition as a major crossroad in numerous cellular signaling pathways through its ability to regulate cell differentiation, proliferation, survival and metabolism. This review focuses on the recent advances in AKT signaling and downstream events in T cells, emphasizing its contrasting role in conventional and regulatory (Treg) Tcell populations. Activation of AKT has been known for many years to be critical in the development and function of conventional Tcells. However, it has just recently been uncovered that AKTexerts an inhibitory effect on Treg generation and suppressor function. These studies have placed AKTat the nexus of Treg development and function, thus opening novel avenues for therapeutic manipulation.
This is a preview of subscription content, access via your institution.
References
Akbar A N, Vukmanovic-Stejic M, Taams L S, Macallan D C (2007). The dynamic co-evolution of memory and regulatory CD4+ Tcells in the periphery. Nat Rev Immunol, 7(3): 231–237
Alessi D R, Cohen P (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev, 8(1): 55–62
Alessi D R, Pearce L R, GarcÃa-MartÃnez J M (2009). New insights into mTOR signaling: mTORC2 and beyond. Sci Signal, 2(67): pe27
Altomare D A, Guo K, Cheng J Q, Sonoda G, Walsh K, Testa J R (1995). Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene, 11(6): 1055–1060
Andjelković M, Jakubowicz T, Cron P, Ming X F, Han J W, Hemmings B A (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA, 93(12): 5699–5704
Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa T C, Cumano A, Bandeira A (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol, 166(5): 3008–3018
Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002). Origin of regulcdory T cells with known specificity for antigen. Nat Immunol, 3(8): 756–763
Arimura Y, Shiroki F, Kuwahara S, Kato H, Dianzani U, Uchiyama T, Yagi J (2004). Akt is a neutral amplifier for Th cell differentiation. J Biol Chem, 279(12): 11408–11416
Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes C P, Alessi D R (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol, 9(8): 393–404
Beals C R, Sheridan C M, Turck C W, Gardner P, Crabtree G R (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science, 275(5308): 1930–1933
Bellacosa A, Testa J R, Staal S P, Tsichlis P N (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 254(5029): 274–277
Bluestone J A, Abbas A K (2003). Natural versus adaptive regulatory T cells. Nat Rev Immunol, 3(3): 253–257
Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005). NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory Tcells. J Exp Med, 201(2): 181–187
Brodbeck D, Cron P, Hemmings B A (1999). A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem, 274(14): 9133–9136
Brognard J, Sierecki E, Gao T, Newton A C (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 25(6): 917–931
Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868
Brunkow ME, Jeffery EW, Hjerrild K A, Paeper B, Clark L B, Yasayko S A, Wilkinson J E, Galas D, Ziegler S F, Ramsdell F (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 27(1): 68–73
Burgering B M, Coffer P J (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 376(6541): 599–602
Burgering B M, Kops G J (2002). Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 27(7): 352–360
Cantley L C, Neel B G (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 96(8): 4240–4245
Cardone M H, Roy N, Stennicke H R, Salvesen G S, Franke T F, Stanbridge E, Frisch S, Reed J C (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392): 1318–1321
Carpenter C L, Cantley L C (1996). Phosphoinositide kinases. Curr Opin Cell Biol, 8(2): 153–158
Chen C, Edelstein L C, Gélinas C (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol, 20(8): 2687–2695
Cheng J Q, Godwin A K, Bellacosa A, Taguchi T, Franke T F, Hamilton T C, Tsichlis P N, Testa J R (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA, 89(19): 9267–9271
Coffer P J, Woodgett J R (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMPdependent and protein kinase C families. Eur J Biochem, 201(2): 475–481
Conery A R, Cao Y, Thompson E A, Townsend C M Jr, Ko T C, Luo K (2004). Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol, 6(4): 366–372
Coombes J L, Siddiqui K R, Arancibia-Cárcamo C V, Hall J, Sun C M, Belkaid Y, Powrie F (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204(8): 1757–1764
Crellin N K, Garcia R V, Levings M K (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 109(5): 2014–2022
Datta S R, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg M E (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2): 231–241
del Peso L, González-GarcÃa M, Page C, Herrera R, Nuñez G (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278(5338): 687–689
Du K, Montminy M (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273(49): 32377–32379
Duarte J H, Zelenay S, Bergman ML, Martins A C, Demengeot J (2009). Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol, 39(4): 948–955
Dummler B, Hemmings B A (2007). Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans, 35(2): 231–235
Feuerer M, Hill J A, Mathis D, Benoist C (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol, 10(7): 689–695
Fontenot J D, Gavin M A, Rudensky A Y (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4(4): 330–336
Franke T F, Yang S I, Chan T O, Datta K, Kazlauskas A, Morrison D K, Kaplan D R, Tsichlis P N (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 81(5): 727–736
Gao T, Furnari F, Newton A C (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 18(1): 13–24
Godfrey D I, Kennedy J, Suda T, Zlotnik A (1993). A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol, 150(10): 4244–4252
Gregori S, Giarratana N, Smiroldo S, Adorini L (2003). Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol, 171(8): 4040–4047
Hagenbeek T J, Naspetti M, Malergue F, Garçon F, Nunès J A, Cleutjens K B, Trapman J, Krimpenfort P, Spits H (2004). The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med, 200(7): 883–894
Hanada M, Feng J, Hemmings B A (2004). Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta, 1697(1–2): 3–16
Harrington L S, Findlay G M, Lamb R F (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci, 30(1): 35–42
Haxhinasto S, Mathis D, Benoist C (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med, 205(3): 565–574
Hill MM, Andjelkovic M, Brazil D P, Ferrari S, Fabbro D, Hemmings B A (2001). Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem, 276(28): 25643–25646
Hinton H J, Alessi D R, Cantrell D A (2004). The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol, 5(5): 539–545
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder P K, Pan B S, Kotani H (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther, 9(7): 1956–1967
Hoffman K, Holmes F A, Fraschini G, Esparza L, Frye D, Raber M N, Newman R A, Hortobagyi G N (1996). Phase I–II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol, 37(3): 254–258
Hori S (2010). Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol, 22(5): 575–582
Hori S, Nomura T, Sakaguchi S (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609): 1057–1061
Horwitz D A, Zheng S G, Gray J D (2008). Natural and TGF-betainduced Foxp3(+)CD4(+) CD25(+) regulatory Tcells are not mirror images of each other. Trends Immunol, 29(9): 429–435
Huang J, Manning B D (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 37(1): 217–222
Jefferies H B, Fumagalli S, Dennis P B, Reinhard C, Pearson R B, Thomas G (1997). Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J, 16(12): 3693–3704
Jones P F, Jakubowicz T, Pitossi F J, Maurer F, Hemmings B A (1991). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA, 88(10): 4171–4175
Josefowicz S Z, Rudensky A (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity, 30(5): 616–625
Juntilla M M, Koretzky G A (2008). Critical roles of the PI3K/Akt signaling pathway in Tcell development. Immunol Lett, 116(2): 104–110
Juntilla M M, Wofford J A, Birnbaum M J, Rathmell J C, Koretzky G A (2007). Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA, 104(29): 12105–12110
Kandel E S, Hay N (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res, 253(1): 210–229
Kane L P, Andres P G, Howland K C, Abbas A K, Weiss A (2001). Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol, 2(1): 37–44
Kane L P, Shapiro V S, Stokoe D, Weiss A (1999). Induction of NFkappaB by the Akt/PKB kinase. Curr Biol, 9(11): 601–604
Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, Ohta T, Ichikawa H, Aburatani H, Tashiro F, Taya Y (2009). PH domainonly protein PHLDA3 is a p53-regulated repressor of Akt. Cell, 136(3): 535–550
Khattri R, Cox T, Yasayko S A, Ramsdell F (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 4(4): 337–342
Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E (2000). The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol, 165(4): 1743–1754
King C G, Kobayashi T, Cejas P J, Kim T, Yoon K, Kim G K, Chiffoleau E, Hickman S P, Walsh P T, Turka L A, Choi Y (2006). TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med, 12(9): 1088–1092
Kleijn M, Scheper G C, Voorma H O, Thomas A A (1998). Regulation of translation initiation factors by signal transduction. Eur J Biochem, 253(3): 531–544
Kojima H, Kanno Y, Hase H, Kobata T (2005). CD4+CD25+ regulatory T cells attenuate the phosphatidylinositol 3-kinase/Akt pathway in antigen-primed immature CD8+ CTLs during functional maturation. J Immunol, 174(10): 5959–5967
Komatsu N, Mariotti-Ferrandiz M E, Wang Y, Malissen B, Waldmann H, Hori S (2009). Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA, 106(6): 1903–1908
Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995). Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun, 216(2): 526–534
Lafont V, Astoul E, Laurence A, Liautard J, Cantrell D (2000). The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett, 486(1): 38–42
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M (2010). Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity, 32(6): 743–753
Levelt C N, Carsetti R, Eichmann K (1993a). Regulation of thymocyte development through CD3. II. Expression of Tcell receptor beta CD3 epsilon and maturation to the CD4+8+ stage are highly correlated in individual thymocytes. J Exp Med, 178(6): 1867–1875
Levelt C N, Ehrfeld A, Eichmann K (1993b). Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3 epsilon determines clonal deletion or induction of developmental program. J Exp Med, 177(3): 707–716
Liao Y, Hung M C (2004). A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer druginduced apoptosis in human breast cancer cells. Cancer Res, 64(17): 5938–5942
Livolsi A, Busuttil V, Imbert V, Abraham R T, Peyron J F (2001). Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem, 268(5): 1508–1515
Madrid LV, Wang C Y, Guttridge D C, Schottelius A J, Baldwin A S Jr, Mayo M W (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 20(5): 1626–1638
Maira S M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, GarcÃa-EcheverrÃa C (2008). Identification and characterization of NVPBEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 7(7): 1851–1863
Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274
Mao C, Tili E G, Dose M, Haks M C, Bear S E, Maroulakou I, Horie K, Gaitanaris G A, Fidanza V, Ludwig T, Wiest D L, Gounari F, Tsichlis P N (2007). Unequal contribution of Akt isoforms in the doublenegative to double-positive thymocyte transition. J Immunol, 178(9): 5443–5453
Markman B, Dienstmann R, Tabernero J (2010). Targeting the PI3K/Akt/mTOR pathway—beyond rapalogs. Oncotarget, 1(7): 530–543
Marone R, Cmiljanovic V, Giese B, Wymann M P (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta, 1784(1): 159–185
Mendoza MC, Blenis J (2007). PHLPPing it off: phosphatases get in the Akt. Mol Cell, 25(6): 798–800
Monk C R, Spachidou M, Rovis F, Leung E, Botto M, Lechler R I, Garden O A (2005). MRL/Mp CD4+,CD25− T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum, 52(4): 1180–1184
Nakatani K, Sakaue H, Thompson D A, Weigel R J, Roth R A (1999). Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun, 257(3): 906–910
O’Reilly K E, Rojo F, She Q B, Solit D, Mills G B, Smith D, Lane H, Hofmann F, Hicklin D J, Ludwig D L, Baselga J, Rosen N (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 66(3): 1500–1508
Obata T, Yaffe M B, Leparc G G, Piro E T, Maegawa H, Kashiwagi A, Kikkawa R, Cantley L C (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem, 275(46): 36108–36115
Oldenhove G, Bouladoux N, Wohlfert E A, Hall J A, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S, Kastenmayer R, Hunter C, Grigg M E, Belkaid Y (2009). Decrease of Foxp3 + Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity, 31(5): 772–786
Ozes O N, Mayo L D, Gustin J A, Pfeffer S R, Pfeffer L M, Donner D B (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401(6748): 82–85
Padmanabhan S, Mukhopadhyay A, Narasimhan S D, Tesz G, Czech M P, Tissenbaum H A (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell, 136(5): 939–951
Pal S K, Reckamp K, Yu H, Figlin R A (2010). Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs, 19(11): 1355–1366
Papiernik M, de Moraes M L, Pontoux C, Vasseur F, Pénit C (1998). Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol, 10(4): 371–378
Parry R V, Reif K, Smith G, Sansom D M, Hemmings B A, Ward S G (1997). Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol, 27(10): 2495–2501
Patra A K, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt U H (2006). PKB rescues calcineurin/NFAT-induced arrest of Rag expression and pre-T cell differentiation. J Immunol, 177(7): 4567–4576
Patterson S J, Han J M, Garcia R, Assi K, Gao T, O’Neill A, Newton A C, Levings M K (2011). Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol, 186(10): 5533–5537
Peifer C, Alessi D R (2008). Small-molecule inhibitors of PDK1. ChemMedChem, 3(12): 1810–1838
Penit C, Vasseur F (1989). Cell proliferation and differentiation in the fetal and early postnatal mouse thymus. J Immunol, 142(10): 3369–3377
Pillai V, Karandikar N J (2007). Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett, 114(1): 9–15
Pim D, Massimi P, Dilworth S M, Banks L (2005). Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene, 24(53): 7830–7838
Rao A, Luo C, Hogan P G (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 15(1): 707–747
Redpath N T, Foulstone E J, Proud C G (1996). Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J, 15(9): 2291–2297
Reid J M, Walden C A, Qin R, Ziegler K L, Haslam J L, Rajewski R A, Warndahl R, Fitting C L, Boring D, Szabo E, Crowell J, Perloff M, Jong L, Bauer B A, Mandrekar S J, Ames M M, Limburg P J, and the Cancer Prevention Network (2011). Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer Prev Res (Phila), 4(3): 347–353
Reif K, Burgering B M, Cantrell D A (1997). Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem, 272(22): 14426–14433
Remy I, Montmarquette A, Michnick S W (2004). PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol, 6(4): 358–365
Reneer M C, Estes D J, Velez-Ortega A C, Norris A, Mayer M, Marti F (2011). Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol, 41(11):3170–3175
Rengarajan J, Tang B, Glimcher L H (2002). NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol, 3(1): 48–54
Rocher G, Letourneux C, Lenormand P, Porteu F (2007). Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem, 282(8): 5468–5477
Roget K, Malissen M, Malbec O, Malissen B, Daëron M (2008). Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol, 180(6): 3689–3698
Romashkova J A, Makarov S S (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401(6748): 86–90
Rondinone C M, Carvalho E, Wesslau C, Smith U P (1999). Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia, 42(7): 819–825
Rong S B, Hu Y, Enyedy I, Powis G, Meuillet E J, Wu X, Wang R, Wang S, Kozikowski A P (2001). Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem, 44(6): 898–908
Salomon B, Bluestone J A (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol, 19(1): 225–252
Sarbassov D D, Guertin D A, Ali S M, Sabatini D M (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712): 1098–1101
Sasaki T, Irie-Sasaki J, Jones R G, Oliveira-dos-Santos A J, Stanford W L, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T W, Ohashi P S, Suzuki A, Penninger J M (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science, 287(5455): 1040–1046
Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight Z A, Cobb B S, Cantrell D, O’Connor E, Shokat K M, Fisher A G, Merkenschlager M (2008). T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA, 105(22): 7797–7802
Shevach E M (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med, 193(11): F41–F46
Shevach E M (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30(5): 636–645
Shimoke K, Chiba H (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease. J Neurosci Res, 63(5): 402–409
Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark G R (2002). Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem, 277(6): 3863–3869
Song G, Ouyang G, Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 9(1): 59–71
Song K, Wang H, Krebs T L, Danielpour D (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J, 25(1): 58–69
Staal S P (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA, 84(14): 5034–5037
Staal S P, Hartley J W, Rowe W P (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA, 74(7): 3065–3067
Stahl M, Dijkers P F, Kops G J, Lens S M, Coffer P J, Burgering B M, Medema R H (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol, 168(10): 5024–5031
Stambolic V, Suzuki A, de la Pompa J L, Brothers G M, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski D P, Mak T W (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95(1): 29–39
Starr T K, Jameson S C, Hogquist K A (2003). Positive and negative selection of T cells. Annu Rev Immunol, 21(1): 139–176
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura A J, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M (2009). The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell, 17(6): 800–810
Tang Q, Bluestone J A (2008). The Foxp3+ regulatory Tcell: a jack of all trades, master of regulation. Nat Immunol, 9(3): 239–244
Thomas C C, Deak M, Alessi D R, van Aalten D M (2002). Highresolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol, 12(14): 1256–1262
Turinsky J, Damrau-Abney A (1998). Akt1 kinase and dynamics of insulin resistance in denervated muscles in vivo. Am J Physiol, 275(5 Pt 2): R1425–R1430
Vignali D A, Collison LW, Workman C J (2008). How regulatory T cells work. Nat Rev Immunol, 8(7): 523–532
Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248
Vukmanovic-Stejic M, Zhang Y, Cook J E, Fletcher J M, McQuaid A, Masters J E, Rustin M H, Taams L S, Beverley P C, Macallan D C, Akbar A N (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 116(9): 2423–2433
Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson T J, Djuretic I M, Sundrud M S, Unutmaz D (2011). Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6 + human memory T cells. J Exp Med, 208(9): 1875–1887
Wehrens E J, Mijnheer G, Duurland C L, Klein M, Meerding J, van Loosdregt J, de Jager W, Sawitzki B, Coffer PJ, Vastert B, Prakken B J, van Wijk F (2011). Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 118(13):3538–3548
Werlen G, Hausmann B, Naeher D, Palmer E (2003). Signaling life and death in the thymus: timing is everything. Science, 299(5614): 1859–1863
Wiesinger D, Gubler H U, Haefliger W, Hauser D (1974). Antiin-flammatory activity of the new mould metabolite 11-desacetoxywortmannin and of some of its derivatives. Experientia, 30(2): 135–136
Workman C J, Szymczak-Workman A L, Collison L W, Pillai M R, Vignali D A (2009). The development and function of regulatory T cells. Cell Mol Life Sci, 66(16): 2603–2622
Xu L, Kitani A, Fuss I, Strober W (2007). Cutting edge: regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol, 178(11): 6725–6729
Yang X O, Nurieva R, Martinez G J, Kang H S, Chung Y, Pappu B P, Shah B, Chang S H, Schluns K S, Watowich S S, Feng X H, Jetten A M, Dong C (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29(1): 44–56
Yang Z Z, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings B A (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans, 32(2): 350–354
You S, Belghith M, Cobbold S, Alyanakian M A, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach J F, Chatenoud L (2005). Autoimmune diabetes onset results from qualitative rather than quantitative agedependent changes in pathogenic T-cells. Diabetes, 54(5): 1415–1422
Yung HW, Charnock-Jones D S, Burton G J (2011). Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE, 6(3): e17894
Zhou L, Lopes J E, Chong MM, Ivanov I I, Min R, Victora G D, Shen Y, Du J, Rubtsov Y P, Rudensky AY, Ziegler S F, Littman D R (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192): 236–240
Ziegler S F (2006). FOXP3: of mice and men. Annu Rev Immunol, 24(1): 209–226
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reneer, M.C., Marti, F. The balancing act of AKT in T cells. Front. Biol. 8, 160–174 (2013). https://doi.org/10.1007/s11515-012-1202-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11515-012-1202-6