Skip to main content
Log in

Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants

  • Review
  • Published:
Frontiers in Biology

Abstract

Natural killer T (NKT) cells comprise a small, but important T cell subset and are thought to bridge the innate and adaptive immune responses. The discovery of NKT cells and extensive research on their activating ligands have paved the way for modulation of these potent immunoregulatory cells in order to improve the outcome of various clinical conditions. Efforts to modulate NKT cell effector functions have ranged from therapy for influenza to antitumor immunotherapy. These approaches have also led to the use of NKTcell agonists such as α-Galactosylceramide (α-GalCer) and its analogs as vaccine adjuvants, an approach that is aimed at boosting specific B and Tcell responses to a vaccine candidate by concomitant activation of NKT cells. In this review we will provide a comprehensive overview of the efforts made in using α-GalCer and its analogs as vaccine adjuvants. The diverse array of vaccination strategies used, as well as the role of NKTcell activating adjuvants will be discussed, with focus on vaccines against malaria, HIV, influenza and tumor vaccines. Collectively, these studies demonstrate the efficacy of NKT cell-specific agonists as adjuvants and suggest that these compounds warrant serious consideration during the development of vaccination strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer C, Dauer M, Saraj S, Schnurr M, Bauernfeind F, Sterzik A, Junkmann J, Jakl V, Kiefl R, Oduncu F, Emmerich B, Mayr D, Mussack T, Bruns C, Rüttinger D, Conrad C, Jauch K W, Endres S, Eigler A (2011). Dendritic cell-based vaccination of patients with advanced pancreatic carcinoma: results of a pilot study. Cancer Immunol Immunother, 60(8): 1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Blauvelt M L, Khalili M, Jaung W, Paulsen J, Anderson A C, Brian Wilson S, Howell A R (2008). Alpha-S-GalCer: synthesis and evaluation for iNKT cell stimulation. Bioorg Med Chem Lett, 18(24): 6374–6376

    Article  PubMed  CAS  Google Scholar 

  • Burdin N, Brossay L, Koezuka Y, Smiley S T, Grusby M J, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998). Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol, 161(7): 3271–3281

    PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park S H, Beavis A, Koezuka Y, Bendelac A (1999). Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol, 163(9): 4647–4650

    PubMed  CAS  Google Scholar 

  • Chung Y, Qin H, Kang C Y, Kim S, Kwak L W, Dong C (2007). An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood, 110(6): 2013–2019

    Article  PubMed  CAS  Google Scholar 

  • Clyde D F (1975). Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg, 24(3): 397–401

    PubMed  CAS  Google Scholar 

  • Courtney A N, Thapa P, Singh S, Wishahy A M, Zhou D, Sastry K J (2011). Intranasal but not intravenous delivery of the adjuvant alphagalactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol, 41(11):3312–3322

    Article  PubMed  CAS  Google Scholar 

  • Crowe N Y, Coquet J M, Berzins S P, Kyparissoudis K, Keating R, Pellicci D G, Hayakawa Y, Godfrey D I, Smyth M J (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med, 202(9): 1279–1288

    Article  PubMed  CAS  Google Scholar 

  • Fleuridor R, Wilson B, Hou R, Landay A, Kessler H, Al-Harthi L (2003). CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology, 108(1): 3–9

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes B J, Kruisbeek A M, Ton-That H, Weston M A, Coligan J E, Schwartz R H, Pardoll D M (1987). A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature, 329(6136): 251–254

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G, Punt C J, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg B M, Scheper R J, van der Vliet H J, van den Eertwegh A J, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res, 8(12): 3702–3709

    PubMed  CAS  Google Scholar 

  • Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann C C, Wilson J M, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M (2002). Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med, 195(5): 617–624

    Article  PubMed  CAS  Google Scholar 

  • Hogan A E, O’Reilly V, Dunne M R, Dere R T, Zeng S G, O’Brien C, Amu S, Fallon P G, Exley M A, O’Farrelly C, Zhu X, Doherty D G (2011). Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol, 140(2): 196–207

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho D D, Tsuji M (2008). Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine, 26(15): 1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Joyce S, Woods A S, Yewdell J W, Bennink J R, De Silva A D, Boesteanu A, Balk S P, Cotter R J, Brutkiewicz R R (1998). Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science, 279(5356): 1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino K I (2008). Mechanism of NKT cell activation by intranasal coadministration of alphagalactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol, 1(3): 208–218

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001). Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun, 69(1): 213–220

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKTcells by glycosylceramides. Science, 278(5343): 1626–1629

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Hung C F, Wu T C, Park Y M (2010). DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine, 28(45): 7297–7305

    Article  PubMed  CAS  Google Scholar 

  • Kim Y J, Ko H J, Kim Y S, Kim D H, Kang S, Kim JM, Chung Y, Kang C Y (2008). Alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer, 122(12): 2774–2783

    Article  PubMed  CAS  Google Scholar 

  • Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia M R, Zajonc DM, Ben-Menachem G, Ainge G D, Painter G F, Khurana A, Hoebe K, Behar S M, Beutler B, Wilson I A, Tsuji M, Sellati T J, Wong C H, Kronenberg M (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol, 7(9): 978–986

    Article  PubMed  CAS  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing G W, Poles M A, Ho D D, Tsuji M, Kawahara K, Wong C H, Kronenberg M (2005). Recognition of bacterial glycosphingolipids by natural killer T cells. Nature, 434(7032): 520–525

    Article  PubMed  CAS  Google Scholar 

  • Ko H J, Lee J M, Kim Y J, Kim Y S, Lee K A, Kang C Y (2009). Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol, 182(4): 1818–1828

    Article  PubMed  CAS  Google Scholar 

  • Ko S Y, Ko H J, Chang W S, Park S H, Kweon M N, Kang C Y (2005). alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol, 175(5): 3309–3317

    PubMed  CAS  Google Scholar 

  • Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res, 7(10–11): 529–534

    PubMed  CAS  Google Scholar 

  • Kopecky-Bromberg S A, Fraser K A, Pica N, Carnero E, Moran T M, Franck RW, Tsuji M, Palese P (2009). Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine, 27(28): 3766–3774

    Article  PubMed  CAS  Google Scholar 

  • Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl K F, Mizutani Y, Imai K, Taniguchi M (1991). Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci USA, 88(17): 7518–7522

    Article  PubMed  CAS  Google Scholar 

  • Lee P T, Benlagha K, Teyton L, Bendelac A (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med, 195(5): 637–641

    Article  PubMed  CAS  Google Scholar 

  • Lee Y S, Lee K A, Lee J Y, Kang M H, Song Y C, Baek D J, Kim S, Kang C Y (2011). An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine, 29(3): 417–425

    Article  PubMed  CAS  Google Scholar 

  • Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C H, Ho D D, Tsuji M (2010a). Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA, 107(29): 13010–13015

    Article  PubMed  Google Scholar 

  • Li Y, Girardi E, Wang J, Yu E D, Painter G F, Kronenberg M, Zajonc D M (2010b). The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med, 207(11): 2383–2393

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Song L, Metelitsa L S, Bittman R (2006). Synthesis and evaluation of an alpha-C-galactosylceramide analogue that induces Th1-biased responses in human natural killer T cells. ChemBioChem, 7(11): 1750–1756

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995). Predominant expression of invariant V alpha 14 + TCR alpha chain in NK1.1+ T cell populations. Int Immunol, 7(7): 1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage P B, Dekruyff R H, Umetsu D T (2008). Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol, 121(5): 1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Mattner J, Debord K L, Ismail N, Goff R D, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage P B, Bendelac A (2005). Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature, 434(7032): 525–529

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Miyake S, Yamamura T (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature, 413(6855): 531–534

    Article  PubMed  CAS  Google Scholar 

  • Molling JW, Kölgen W, Van der Vliet H J, Boomsma MF, Kruizenga H, Smorenburg C H, Molenkamp B G, Langendijk J A, Leemans C R, von Blomberg B M, Scheper R J, Van den Eertwegh A J (2005). Peripheral blood IFN-gamma-secreting Valpha24+ Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer, 116(1): 87–93

    Article  PubMed  CAS  Google Scholar 

  • Motsinger A, Haas D W, Stanic A K, Van Kaer L, Joyce S, Unutmaz D (2002). CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med, 195(7): 869–879

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa R, Serizawa I, Motoki K, Sato M, Ueno H, Iijima R, Nakamura H, Shimosaka A, Koezuka Y (2000). Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor nfiltrating cells. Oncol Res, 12(2): 51–58

    PubMed  CAS  Google Scholar 

  • Nam J H, Kim E H, Song D, Choi Y K, Kim J K, Poo H (2011). Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol, 7(23):3281–3286

    Google Scholar 

  • Natori T, Akimoto K, Motoki K, Koezuka Y, Higa T (1997). Development of KRN7000, derived from agelasphin produced by okinawan sponge. Nihon Yakurigaku Zasshi, 110Suppl 163P–68P

    Article  Google Scholar 

  • Niemeyer M, Darmoise A, Mollenkopf H J, Hahnke K, Hurwitz R, Besra G S, Schaible U E, Kaufmann S H (2008). Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 123(1): 45–56

    Article  PubMed  CAS  Google Scholar 

  • Osada T, Morse M A, Lyerly H K, Clay T M (2005). Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol, 17(9): 1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Parekh V V, Wilson M T, Olivares-Villagómez D, Singh A K, Wu L, Wang C R, Joyce S, Van Kaer L (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest, 115(9): 2572–2583

    Article  PubMed  CAS  Google Scholar 

  • Petersen T R, Sika-Paotonu D, Knight D A, Dickgreber N, Farrand K J, Ronchese F, Hermans I F (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol, 88(5): 596–604

    Article  PubMed  CAS  Google Scholar 

  • Porcelli S, Gerdes D, Fertig A M, Balk S P (1996). Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4-and heterogeneous with respect to TCR beta expression. Hum Immunol, 48(1–2): 63–67

    Article  PubMed  CAS  Google Scholar 

  • Roberts T J, Sriram V, Spence P M, Gui M, Hayakawa K, Bacik I, Bennink J R, Yewdell J W, Brutkiewicz R R (2002). Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol, 168(11): 5409–5414

    PubMed  CAS  Google Scholar 

  • Rui-Hua Z, Hong-Yu C, Ming-Ju X, Kai L, Hua-Lan C, Cun-Lian W, Dong W, Cun-Xin L, Tong X (2011). Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2). Acta Virol, 55(3): 219–226

    Article  PubMed  CAS  Google Scholar 

  • Sandberg J K, Fast N M, Palacios E H, Fennelly G, Dobroszycki J, Palumbo P, Wiznia A, Grant R M, Bhardwaj N, Rosenberg M G, Nixon D F (2002). Selective loss of innate CD4(+) Valpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol, 76(15): 7528–7534

    Article  PubMed  CAS  Google Scholar 

  • Schmieg J, Yang G, Franck R W, Tsuji M (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med, 198(11): 1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Schmieg J, Yang G, Franck R W, Tsuji M (2010). A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol, 2010: 283612

    Article  PubMed  CAS  Google Scholar 

  • Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V (1987). Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, 330(6149): 664–666

    Article  PubMed  CAS  Google Scholar 

  • Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2003). NKTand CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer, 106(2): 236–243

    Article  PubMed  CAS  Google Scholar 

  • Silk J D, Hermans I F, Gileadi U, Chong T W, Shepherd D, Salio M, Mathew B, Schmidt R R, Lunt S J, Williams K J, Stratford I J, Harris A L, Cerundolo V (2004). Utilizing the adjuvant properties of CD1ddependent NK T cells in T cell-mediated immunotherapy. J Clin Invest, 114(12): 1800–1811

    PubMed  CAS  Google Scholar 

  • Sriram V, Du W, Gervay-Hague J, Brutkiewicz R R (2005). Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1dspecific ligands for NKT cells. Eur J Immunol, 35(6): 1692–1701

    Article  PubMed  CAS  Google Scholar 

  • Sullivan B A, Kronenberg M (2005). Activation or anergy: NKTcells are stunned by alpha-galactosylceramide. J Clin Invest, 115(9): 2328–2329

    Article  PubMed  CAS  Google Scholar 

  • Teng M W, Westwood J A, Darcy P K, Sharkey J, Tsuji M, Franck RW, Porcelli S A, Besra G S, Takeda K, Yagita H, Kershaw M H, Smyth M J (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res, 67(15): 7495–7504

    Article  PubMed  CAS  Google Scholar 

  • Thapa P, Zhang G, Xia C, Gelbard A, Overwijk W W, Liu C, Hwu P, Chang D Z, Courtney A, Sastry J K, Wang P G, Li C, Zhou D (2009). Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine, 27(25–26): 3484–3488

    Article  PubMed  CAS  Google Scholar 

  • Uldrich A P, Crowe N Y, Kyparissoudis K, Pellicci D G, Zhan Y, Lew A M, Bouillet P, Strasser A, Smyth M J, Godfrey D I (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol, 175(5): 3092–3101

    PubMed  CAS  Google Scholar 

  • van der Vliet H J, von Blomberg B M, Hazenberg M D, Nishi N, Otto S A, Van Benthem B H, Prins M, Claessen FA, Van den Eertwegh A J, Giaccone G, Miedema F, Scheper R J, Pinedo H M (2002). Selective decrease in circulating Valpha 24+V beta 11+ NKTcells during HIV type 1 infection. J Immunol, 168(3): 1490–1495

    PubMed  Google Scholar 

  • Vanderberg J P, Nussenzweig R S, Most H, Orton C G (1968). Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol, 54(6): 1175–1180

    CAS  Google Scholar 

  • Velmourougane G, Raju R, Bricard G, Im J S, Besra G S, Porcelli S A, Howell A R (2009). Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH. Bioorg Med Chem Lett, 19(13): 3386–3388

    Article  PubMed  CAS  Google Scholar 

  • Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25–S30

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Motoki K, Ueno H, Maeda K, Kobayashi E, Inoue H, Fukushima H, Koezuka Y (1996). Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino) -1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res, 8(10–11): 399–407

    PubMed  CAS  Google Scholar 

  • Yang G, Schmieg J, Tsuji M, Franck R W (2004). The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed Engl, 43(29): 3818–3822

    Article  PubMed  CAS  Google Scholar 

  • Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, Tsutsumi A, Taniguchi M, Sumida T (2008). Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med, 22(3): 369–374

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE (1995). Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science, 270(5243): 1845–1847

    Article  PubMed  CAS  Google Scholar 

  • Youn H J, Ko S Y, Lee K A, Ko H J, Lee Y S, Fujihashi K, Boyaka P N, Kim S H, Horimoto T, Kweon M N, Kang C Y (2007). A single intranasal immunization with inactivated influenza virus and alphagalactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine, 25(28): 5189–5198

    Article  PubMed  CAS  Google Scholar 

  • Yu E D, Girardi E, Wang J, Zajonc D M (2011). Cutting Edge: Structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol, 187(5): 2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y P, Yamashita T, Teneberg S, Wang D, Proia R L, Levery S B, Savage P B, Teyton L, Bendelac A (2004). Lysosomal glycosphingolipid recognition by NKT cells. Science, 306(5702): 1786–1789

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya J. Webb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subrahmanyam, P.B., Webb, T.J. Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants. Front. Biol. 7, 436–444 (2012). https://doi.org/10.1007/s11515-012-1194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1194-2

Keywords

Navigation