Skip to main content
Log in

Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae

  • Review
  • Published:
Frontiers in Biology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Endogenous small RNAs (miRNAs and siRNAs) regulate gene expression in diverse biological processes. Research with the Arabidopsis-Pseudomonas syringae system has shown that small RNAs contribute to plant immunity by regulating the expression of their target genes. Plant immunity can be triggered by pathogen-associated molecular patterns (PAMPs) or effector proteins that are delivered into the host cell by the pathogen. Experimental evidence indicates that the miRNA pathway play a major role in PAMP-triggered immunity while some of the siRNA pathways appear to be more important in effector-triggered immunity. In addition, some P. syringae effector proteins appear to inhibit miRNA biogenesis or function to enhance bacterial virulence. These exciting findings illustrate a new battle ground for plant-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agorio A, Vera P (2007). ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19(11): 3778–3790

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2004). RNA silencing in plants. Nature, 431(7006): 356–363

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He S Y (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 324(5928): 742–744

    Article  PubMed  CAS  Google Scholar 

  • Chapman E J, Carrington J C (2007). Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 8(11): 884–896

    Article  PubMed  CAS  Google Scholar 

  • Chisholm S T, Coaker G, Day B, Staskawicz B J (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4): 803–814

    Article  PubMed  CAS  Google Scholar 

  • Crane Y M, Gelvin S B (2007). RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc Natl Acad Sci USA, 104(38): 15156–15161

    Article  PubMed  CAS  Google Scholar 

  • Cui H T, Wang Y J, Xue L, Chu J F, Yan C Y, Fu J H, Chen MS, Innes R W, Zhou J M (2010). Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe, 7(2): 164–175

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219

    Article  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen J P (2009). AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Boil, 19: 423–430

    Article  CAS  Google Scholar 

  • Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield J W, Robatzek S (2008). Plant patternrecognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol, 18(23): 1824–1832

    Article  PubMed  Google Scholar 

  • He X F, Fang Y Y, Feng L, Guo H S (2008). Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett, 582(16): 2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 229(4): 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Jones J D G, Dangl J L (2006). The plant immune system. Nature, 444(7117): 323–329

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H L (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 21(23): 3123–3134

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Jin H L (2010). Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol, 48(1): 225–246

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu J K, Staskawicz B J, Jin H L (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 103(47): 18002–18007

    Article  PubMed  CAS  Google Scholar 

  • Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 21(6): 1762–1768

    Article  PubMed  CAS  Google Scholar 

  • Li X Y, Lin H, Zhang W G, Zou Y, Zhang J, Tang X Y, Zhou J M (2005). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA, 102(36): 12990–12995

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang Q Q, Zhang J G, Wu L, Qi Y J, Zhou J M (2010). Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol, 152(4): 2222–2231

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Elmore J M, Lin Z J, Coaker G (2011). A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe, 9(2): 137–146

    Article  PubMed  CAS  Google Scholar 

  • Lu S F, Sun Y H, Amerson H, Chiang V L (2007). MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J, 51(6): 1077–1098

    Article  PubMed  CAS  Google Scholar 

  • Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell, 14(3): 629–639

    Article  PubMed  CAS  Google Scholar 

  • Mori I C, Schroeder J I (2004). Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol, 135(2): 702–708

    Article  PubMed  CAS  Google Scholar 

  • Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 101(5): 533–542

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772): 436–439

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Jay F, Nomura K, He S Y, Voinnet O (2008). Suppression of the microRNA pathway by bacterial effector proteins. Science, 321(5891): 964–967

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan C, Zhang X, Jin H L (2009). Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol, 12(4): 465–472

    Article  PubMed  CAS  Google Scholar 

  • Sarris P F, Gao S, Karademiris K, Jin H, Kalantidis K, Panopoulos N J (2011). Phytobacterial type III effectors HopX1, HopAB1 and HopF2 enhance sense-post transcriptional gene silencing independently of plant R gene-effector recognition. Mol Plant Microbe Interact, 24(8): 907–907

    Article  PubMed  CAS  Google Scholar 

  • Wang Y J, Li J F, Hou S G, Wang X W, Li Y, Ren D T, Chen S, Tang X Y, Zhou J M (2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell, 22(6): 2033–2044

    Article  PubMed  CAS  Google Scholar 

  • Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D (2010). The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA, 107(5): 2349–2354

    Article  PubMed  CAS  Google Scholar 

  • Xiang T T, Zong N, Zou Y, Wu Y, Zhang J, Xing WM, Li Y, Tang X Y, Zhu L H, Chai J J, Zhou J M (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol, 18(1): 74–80

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X, Fang R (2011). Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J, 65(5): 820–828

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li W, Xiang T T, Liu Z X, Laluk K, Ding X J, Zou Y, Gao MH, Zhang X J, Chen S, Mengiste T, Zhang Y L, Zhou J M (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe, 7(4): 290–301

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H T, Chen L J, Li H T, Zou Y, Long C Z, Lan L F, Chai J J, Chen S, Tang X Y, Zhou J M (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe, 1(3): 175–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang W C, Katiyar-Agarwal S, Huang H D, Raikhel N, Jin H (2011). Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell, 42(3): 356–366

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Lin J, Johnson A, Morgan R L, Zhong W, Ma W (2011). Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe, 9(3): 177–186

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot, 61(15): 4157–4168

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Sunkar R, Jin H, Zhu J K, Zhang W (2009). Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res, 19(1): 70–78

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607): 716–719

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Cao X F, Johansen L K, Xie Z X, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol, 14(13): 1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125(4): 749–760

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley E J, Jones J D, Felix G, Boller T (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984): 764–767

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Min Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, W. & Zhou, JM. Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae . Front. Biol. 6, 462–467 (2011). https://doi.org/10.1007/s11515-011-1169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1169-8

Keywords

Navigation