Roles of histone ubiquitylation in DNA damage signaling
Review
First Online:
- 63 Downloads
Abstract
Histone ubiquitylation has emerged as an important chromatin modification associated with DNA damage signaling and repair pathways. These histone marks, laid down by E3 ubiquitin ligases that include RNF8 and RNF168, decorate chromatin domains surrounding DNA double-strand breaks (DSBs). Recent work implicated ubiquitylated histones in orchestrating cell cycle checkpoints, DNA repair and gene transcription. Here we summarize recent advances that contribute to our current knowledge of the highly dynamic nature of DSB-associated histone ubiquitylation, and discuss major challenges ahead in understanding the versatility of ubiquitin conjugation in maintaining genome stability.
Keywords
DNA damage histone ubiquitylation ubiquitin ligase RNF8 RNF168References
- Al-Hakim A, Escribano-Diaz C, Landry M C, O’Donnell L, Panier S, Szilard R K, Durocher D (2010). The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst), 9(12): 1229–1240CrossRefGoogle Scholar
- Bassing C H, Suh H, Ferguson D O, Chua K F, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt F W (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell, 114(3): 359–370PubMedCrossRefGoogle Scholar
- Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010). HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol, 12(1): 80–86, 1–12PubMedCrossRefGoogle Scholar
- Bennetzen M V, Larsen D H, Bunkenborg J, Bartek J, Lukas J, Andersen J S (2010). Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics, 9(6): 1314–1323PubMedCrossRefGoogle Scholar
- Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang S Y, Chen D J, Aebersold R, Shiloh Y (2010). ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal, 3(151): rs3PubMedCrossRefGoogle Scholar
- Bhaskara V, Dupré A, Lengsfeld B, Hopkins B B, Chan A, Lee J H, Zhang X, Gautier J, Zakian V, Paull T T (2007). Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell, 25(5): 647–661PubMedCrossRefGoogle Scholar
- Botuyan M V, Lee J, Ward I M, Kim J E, Thompson J R, Chen J, Mer G (2006). Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 127(7): 1361–1373PubMedCrossRefGoogle Scholar
- Burma S, Chen B P, Murphy M, Kurimasa A, Chen D J (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276(45): 42462–42467PubMedCrossRefGoogle Scholar
- Celeste A, Difilippantonio S, Difilippantonio M J, Fernandez-Capetillo O, Pilch D R, Sedelnikova O A, Eckhaus M, Ried T, Bonner W M, Nussenzweig A (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell, 114(3): 371–383PubMedCrossRefGoogle Scholar
- Chapman J R, Jackson S P (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep, 9(8): 795–801PubMedCrossRefGoogle Scholar
- Chou D M, Adamson B, Dephoure N E, Tan X, Nottke A C, Hurov K E, Gygi S P, Colaiácovo M P, Elledge S J (2010a). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA, 107(43): 18475–18480PubMedCrossRefGoogle Scholar
- Chou D M, Adamson B, Dephoure N E, Tan X, Nottke A C, Hurov K E, Gygi S P, Colaiácovo M P, Elledge S J (2010b). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA, 107(43): 18475–18480PubMedCrossRefGoogle Scholar
- Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204PubMedCrossRefGoogle Scholar
- Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen D H, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C (2009). RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell, 136(3): 435–446PubMedCrossRefGoogle Scholar
- Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller K M, Jackson S P (2009). Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 462(7275): 935–939PubMedCrossRefGoogle Scholar
- Gong Z, Cho Y W, Kim J E, Ge K, Chen J (2009). Accumulation of Pax2 transactivation domain interaction protein (PTIP) at sites of DNA breaks via RNF8-dependent pathway is required for cell survival after DNA damage. J Biol Chem, 284(11): 7284–7293PubMedCrossRefGoogle Scholar
- Hopfner K P, Karcher A, Craig L, Woo T T, Carney J P, Tainer J A (2001). Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell, 105(4): 473–485PubMedCrossRefGoogle Scholar
- Huang J, Huen M S, Kim H, Leung C C, Glover J N, Yu X, Chen J (2009). RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol, 11(5): 592–603PubMedCrossRefGoogle Scholar
- Huen M S, Chen J (2010). Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci, 35(2): 101–108PubMedCrossRefGoogle Scholar
- Huen M S, Grant R, Manke I, Minn K, Yu X, Yaffe M B, Chen J (2007a). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131(5): 901–914PubMedCrossRefGoogle Scholar
- Huen M S, Grant R, Manke I, Minn K, Yu X, Yaffe M B, Chen J (2007b). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131(5): 901–914PubMedCrossRefGoogle Scholar
- Huen M S, Huang J, Yuan J, Yamamoto M, Akira S, Ashley C, Xiao W, Chen J (2008). Noncanonical E2 variant-independent function of UBC13 in promoting checkpoint protein assembly. Mol Cell Biol, 28(19): 6104–6112PubMedCrossRefGoogle Scholar
- Huyen Y, Zgheib O, Ditullio R A Jr, Gorgoulis V G, Zacharatos P, Petty T J, Sheston E A, Mellert H S, Stavridi E S, Halazonetis T D (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA doublestrand breaks. Nature, 432(7015): 406–411PubMedCrossRefGoogle Scholar
- Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007). DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol, 27(20): 7028–7040PubMedCrossRefGoogle Scholar
- Ismail I H, Andrin C, McDonald D, Hendzel M J (2010). BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol, 191(1): 45–60PubMedCrossRefGoogle Scholar
- Iwai K, Tokunaga F (2009). Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep, 10(7): 706–713PubMedCrossRefGoogle Scholar
- Jackson S P, Bartek J (2009). The DNA-damage response in human biology and disease. Nature, 461(7267): 1071–1078PubMedCrossRefGoogle Scholar
- Kim H, Chen J, Yu X (2007). Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science, 316(5828): 1202–1205PubMedCrossRefGoogle Scholar
- Kolas N K, Chapman J R, Nakada S, Ylanko J, Chahwan R, Sweeney F D, Panier S, Mendez M, Wildenhain J, Thomson T M, Pelletier L, Jackson S P, Durocher D (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318(5856): 1637–1640PubMedCrossRefGoogle Scholar
- Komander D (2009). The emerging complexity of protein ubiquitination. Biochem Soc Trans, 37(Pt 5): 937–953PubMedCrossRefGoogle Scholar
- Larsen D H, Poinsignon C, Gudjonsson T, Dinant C, Payne M R, Hari F J, Danielsen J M, Menard P, Sand J C, Stucki M, Lukas C, Bartek J, Andersen J S, Lukas J (2010). The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J Cell Biol, 190(5): 731–740PubMedCrossRefGoogle Scholar
- Lilley C E, Chaurushiya M S, Boutell C, Landry S, Suh J, Panier S, Everett R D, Stewart G S, Durocher D, Weitzman M D (2010). A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J, 29: 943–955PubMedCrossRefGoogle Scholar
- Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007). RNF8 ubiquitylates histones at DNA doublestrand breaks and promotes assembly of repair proteins. Cell, 131(5): 887–900PubMedCrossRefGoogle Scholar
- Manke I A, Lowery D M, Nguyen A, Yaffe M B (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science, 302(5645): 636–639PubMedCrossRefGoogle Scholar
- Matsuoka S, Ballif B A, Smogorzewska A, McDonald E R 3rd, Hurov K E, Luo J, Bakalarski C E, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi S P, Elledge S J (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 316(5828): 1160–1166PubMedCrossRefGoogle Scholar
- Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J (2008). Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol, 181(2): 213–226PubMedCrossRefGoogle Scholar
- Morris J R, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E (2009). The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 462(7275): 886–890PubMedCrossRefGoogle Scholar
- Morris J R, Solomon E (2004). BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet, 13(8): 807–817PubMedCrossRefGoogle Scholar
- Mu J J, Wang Y, Luo H, Leng M, Zhang J, Yang T, Besusso D, Jung S Y, Qin J (2007). A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitinproteasome system as a regulator for DNA damage checkpoints. J Biol Chem, 282(24): 17330–17334PubMedCrossRefGoogle Scholar
- Munoz I M, Jowsey P A, Toth R, Rouse J (2007). Phospho-epitope binding by the BRCT domains of hPTIP controls multiple aspects of the cellular response to DNA damage. Nucleic Acids Res, 35(16): 5312–5322PubMedCrossRefGoogle Scholar
- Murr R, Loizou J I, Yang Y G, Cuenin C, Li H, Wang Z Q, Herceg Z (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol, 8(1): 91–99PubMedCrossRefGoogle Scholar
- Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang Y C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A C, Natsume T, Suda T, Durocher D (2010). Non-canonical inhibition of DNA damagedependent ubiquitination by OTUB1. Nature, 466(7309): 941–946PubMedCrossRefGoogle Scholar
- Panier S, Durocher D (2009). Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst), 8(4): 436–443CrossRefGoogle Scholar
- Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10(15): 886–895PubMedCrossRefGoogle Scholar
- Plans V, Scheper J, Soler M, Loukili N, Okano Y, Thomson T M (2006). The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J Cell Biochem, 97(3): 572–582PubMedCrossRefGoogle Scholar
- Polanowska J, Martin J S, Garcia-Muse T, Petalcorin M I, Boulton S J (2006). A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J, 25(10): 2178–2188PubMedCrossRefGoogle Scholar
- Polo S E, Kaidi A, Baskcomb L, Galanty Y, Jackson S P (2010). Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J, 29(18): 3130–3139PubMedCrossRefGoogle Scholar
- Rogakou E P, Pilch D R, Orr A H, Ivanova V S, Bonner W M (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 273(10): 5858–5868PubMedCrossRefGoogle Scholar
- Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S (2009). Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J, 28(16): 2461–2468PubMedCrossRefGoogle Scholar
- Shanbhag N M, Rafalska-Metcalf I U, Balane-Bolivar C, Janicki S M, Greenberg R A (2010). ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell, 141(6): 970–981PubMedCrossRefGoogle Scholar
- Shao G, Lilli D R, Patterson-Fortin J, Coleman K A, Morrissey D E, Greenberg R A (2009). The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci USA, 106(9): 3166–3171PubMedCrossRefGoogle Scholar
- Sims J J, Cohen R E (2009). Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell, 33(6): 775–783PubMedCrossRefGoogle Scholar
- Smeenk G, Wiegant W W, Vrolijk H, Solari A P, Pastink A, van Attikum H (2010). The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J Cell Biol, 190(5): 741–749PubMedCrossRefGoogle Scholar
- Smolka M B, Albuquerque C P, Chen S H, Zhou H (2007). Proteomewide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA, 104(25): 10364–10369PubMedCrossRefGoogle Scholar
- Sobhian B, Shao G, Lilli D R, Culhane A C, Moreau L A, Xia B, Livingston D M, Greenberg R A (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science, 316(5828): 1198–1202PubMedCrossRefGoogle Scholar
- Spycher C, Miller E S, Townsend K, Pavic L, Morrice N A, Janscak P, Stewart G S, Stucki M (2008). Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol, 181(2): 227–240PubMedCrossRefGoogle Scholar
- Stewart G S, Panier S, Townsend K, Al-Hakim A K, Kolas N K, Miller E S, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd P J, Stankovic T, Taylor A M, Durocher D (2009). The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell, 136(3): 420–434PubMedCrossRefGoogle Scholar
- Stewart G S, Stankovic T, Byrd P J, Wechsler T, Miller E S, Huissoon A, Drayson M T, West S C, Elledge S J, Taylor A M (2007). RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc Natl Acad Sci USA, 104(43): 16910–16915PubMedCrossRefGoogle Scholar
- Stucki M, Clapperton J A, Mohammad D, Yaffe M B, Smerdon S J, Jackson S P (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123(7): 1213–1226PubMedCrossRefGoogle Scholar
- Ulrich H, Walden H (2010). Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol, 11: 479–489PubMedCrossRefGoogle Scholar
- Wang B, Elledge S J (2007). Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A, 104(52): 20759–20763PubMedCrossRefGoogle Scholar
- Wang B, Matsuoka S, Ballif B A, Zhang D, Smogorzewska A, Gygi S P, Elledge S J (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science, 316(5828): 1194–1198PubMedCrossRefGoogle Scholar
- Weake V M, Workman J L (2008). Histone ubiquitination: triggering gene activity. Mol Cell, 29(6): 653–663PubMedCrossRefGoogle Scholar
- Wu J, Prindle M J, Dressler G R, Yu X (2009). PTIP regulates 53BP1 and SMC1 at the DNA damage sites. J Biol Chem, 284(27): 18078–18084PubMedCrossRefGoogle Scholar
- Wu L, Luo K, Lou Z, Chen J (2008). MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci USA, 105(32): 11200–11205PubMedCrossRefGoogle Scholar
- Xu Y, Sun Y, Jiang X, Ayrapetov M K, Moskwa P, Yang S, Weinstock D M, Price B D (2010). The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol, 191(1): 31–43PubMedCrossRefGoogle Scholar
- Zhao G Y, Sonoda E, Barber L J, Oka H, Murakawa Y, Yamada K, Ikura T, Wang X, Kobayashi M, Yamamoto K, Boulton S J, Takeda S (2007). A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell, 25(5): 663–675PubMedCrossRefGoogle Scholar
Copyright information
© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011