Abstract
Two-component signal transduction systems (TCSTSs), consisting of a histidine kinase and a response regulator, play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp.. To date, 12 TCSTS genes have been identified, accounting for approximately 10% of the TCSTS genes in each genome that have been experimentally identified to be related to pathogenesis. These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA, protein-binding and involvement in second messenger metabolism, which generates a high level of regulatory versatility. Here we summarize the current knowledge in this field and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xanthomonas.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alfano J R, Collmer A (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol, 42: 385–414
Andrade MO, Alegria MC, Guzzo C R, Docena C, Rosa MC, Ramos C H, Farah C S (2006). The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol, 62(2): 537–551
Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Méjean V, Whitworth D E (2009). P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics, 10: 315
Burdman S, Shen Y, Lee S W, Xue Q, Ronald P (2004). RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol Plant Microbe Interact, 17(6): 602–612
Büttner D, Bonas U (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev, 34(2): 107–133
Chatterjee S, Wistrom C, Lindow S E (2008). A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci U S A, 105(7): 2670–2675
da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, Van Sluys MA, Almeida N F, Alves LM, do Amaral A M, Bertolini M C, Camargo L E, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina L P, Cicarelli R M, Coutinho L L, Cursino-Santos J R, El-Dorry H, Faria J B, Ferreira A J, Ferreira R C, Ferro M I, Formighieri E F, Franco M C, Greggio C C, Gruber A, Katsuyama A M, Kishi L T, Leite R P, Lemos E G, Lemos M V, Locali E C, Machado M A, Madeira A M, Martinez-Rossi N M, Martins E C, Meidanis J, Menck C F, Miyaki C Y, Moon D H, Moreira L M, Novo M T, Okura V K, Oliveira M C, Oliveira V R, Pereira H A, Rossi A, Sena J A, Silva C, de Souza R F, Spinola L A, Takita M A, Tamura R E, Teixeira E C, Tezza R I, Trindade dos Santos M, Truffi D, Tsai S M, White F F, Setubal J C, Kitajima J P (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417(6887): 459–463
da Silva F G, Shen Y, Dardick C, Burdman S, Yadav R C, de Leon A L, Ronald P C (2004). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol Plant Microbe Interact, 17(6): 593–601
Dekkers L C, Bloemendaal C J, de Weger L A, Wijffelman C A, Spaink H P, Lugtenberg B J (1998). A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact, 11(1): 45–56
Dow J M, Crossman L, Findlay K, He Y Q, Feng J X, Tang J L (2003). Biofilm dispersal in Xanthomonas campestris is controlled by cellcell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A, 100(19): 10995–11000
Dow J M, Daniels M J (1994). Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv. campestris. Curr Top Microbiol Immunol, 192: 29–41
Dow M (2008). Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal, 1(21): pe23
Flor H H (1974). Current status of the gene-for-gene concept. Annu Rev Phytopathol, 9: 275–296
Furutani A, Tsuge S, Ohnishi K, Hikichi Y, Oku T, Tsuno K, Inoue Y, Ochiai H, Kaku H, Kubo Y (2004). Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae. J Bacteriol, 186(5): 1374–1380
Galperin M Y (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol, 5: 35
Gao R, Stock A M (2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol, 63: 133–154
Goodman A L, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev, 23(2): 249–259
Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010). Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol, 13(2): 232–239
Goulian M (2010). Two-component signaling circuit structure and properties. Curr Opin Microbiol, 13(2): 184–189
Grebe T W, Stock J B (1999). The histidine protein kinase superfamily. Adv Microb Physiol, 41: 139–227
Gudesblat G E, Torres P S, Vojnov A A (2009). Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol, 149(2): 1017–1027
He Y W, Boon C, Zhou L, Zhang L H (2009). Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol Microbiol, 71(6): 1464–1476
He Y W, Ng A Y, Xu M, Lin K, Wang L H, Dong Y H, Zhang L H (2007). Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol, 64(2): 281–292
He Y W, Wang C, Zhou L, Song H, Dow J M, Zhang L H (2006). Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem, 281(44): 33414–33421
He YW, Zhang L H (2008). Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev, 32(5): 842–857
Hefti M H, Françoijs K J, de Vries S C, Dixon R, Vervoort J (2004). The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem, 271(6): 1198–1208
Hõrak R, Ilves H, Pruunsild P, Kuljus M, Kivisaar M (2004). The ColRColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol, 54(3): 795–807
Huang D L, Tang D J, Liao Q, Li X Q, He Y Q, Feng J X, Jiang B L, Lu G T, Tang J L (2009). The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol Plant Microbe Interact, 22(3): 321–329
Jones J D, Dangl J L (2006). The plant immune system. Nature, 444(7117): 323–329
Laub M T, Goulian M (2007). Specificity in two-component signal transduction pathways. Annu Rev Genet, 41: 121–145
Leduc J L, Roberts G P (2009). Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol, 191(22): 7121–7122
Lee SW, Han SW, Bartley L E, Ronald P C (2006). From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A, 103(49): 18395–18400
Lee S W, Han S W, Sririyanum M, Park C J, Seo Y S, Ronald P C (2009). A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 326(5954): 850–853
Lee S W, Jeong K S, Han S W, Lee S E, Phee B K, Hahn T R, Ronald P (2008). The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol, 190(6): 2183–2197
Ng W L, Bassler B L (2009). Bacterial quorum-sensing network architectures. Annu Rev Genet, 43: 197–222
Ninfa A J, Magasanik B (1986). Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A, 83(16): 5909–5913
Nixon B T, Ronson C W, Ausubel F M (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A, 83(20): 7850–7854
Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol, 41(6): 1271–1281
Osbourn A E, Clarke B R, Stevens B J, Daniels M J (1990). Use of oligonucleotide probes to identify members of two-component regulatory systems in Xanthomonas campestris pathovar campestris. Mol Gen Genet, 222(1): 145–151
Parkinson J S, Kofoid E C (1992). Communication modules in bacterial signaling proteins. Annu Rev Genet, 26: 71–112
Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M, Biondi E G, Laub M T, Jenal U (2008). Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell, 133(3): 452–461
Perez J C, Shin D, Zwir I, Latifi T, Hadley T J, Groisman E A (2009). Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis. PLoS Genet, 5(3): e1000428
Prost L R, Miller S I (2008). The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol, 10(3): 576–582
Qian W, Han Z J, He C (2008a). Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol Plant Microbe Interact, 21(2): 151–161
Qian W, Han Z J, Tao J, He C Z (2008b). Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol Plant Microbe Interact, 21(8): 1128–1138
Qian W, Jia Y, Ren S X, He Y Q, Feng J X, Lu L F, Sun Q, Ying G, Tang D J, Tang H, Wu W, Hao P, Wang L, Jiang B L, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao G P, Tang J L, He C (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res, 15(6): 757–767
Raghavan V, Groisman E A (2010). Orphan and hybrid two-component system proteins in health and disease. Curr Opin Microbiol, 13(2): 226–231
Ryan R P, Fouhy Y, Lucey J F, Crossman L C, Spiro S, He Y W, Zhang L H, Heeb S, Cámara M, Williams P, Dow J M (2006). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A, 103(17): 6712–6717
Ryan R P, McCarthy Y, Andrade M, Farah C S, Armitage J P, Dow J M (2010). Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A, 107(13): 5989–5994
Silversmith R E (2010). Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol, 13(2): 177–183
Skerker J M, Prasol M S, Perchuk B S, Biondi E G, Laub M T (2005). Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol, 3(10): e334
Slater H, Alvarez-Morales A, Barber C E, Daniels MJ, Dow JM (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol, 38(5): 986–1003
Song WY, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 270(5243): 1804–1806
Stock A M, Robinson V L, Goudreau P N (2000). Two-component signal transduction. Annu Rev Biochem, 69: 183–215
Swartz T E, Tseng T S, Frederickson M A, Paris G, Comerci D J, Rajashekara G, Kim J G, Mudgett M B, Splitter G A, Ugalde R A, Goldbaum F A, Briggs W R, Bogomolni R A (2007). Blue-lightactivated histidine kinases: two-component sensors in bacteria. Science, 317(5841): 1090–1093
Swings J G, Civerolo E L (1993). Xanthomonas. London: Chapman & Hall
Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, Bonas U, Büttner D (2010). Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol, 187(4): 983–1002
Tamayo R, Pratt J T, Camilli A (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol, 61: 131–148
Tang J L, Feng J X, Li Q Q, Wen H X, Zhou D L, Wilson T J, Dow J M, Ma Q S, Daniels MJ (1996). Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact, 9(7): 664–666
Tang J L, Liu Y N, Barber C E, Dow J M, Wootton J C, Daniels M J (1991). Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet, 226(3): 409–417
Tao F, He Y W, Wu D H, Swarup S, Zhang L H (2010). The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol, 192(4): 1020–1029
Tao J, He C (2010). Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris. FEMS Microbiol Lett, 304(1): 20–28
Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H (2006). Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol, 188(11): 4158–4162
Wang L, Rong W, He C (2008). Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol Plant Microbe Interact, 21(5): 555–563
Wang L H, He Y, Gao Y, Wu J E, Dong Y H, He C, Wang S X, Weng L X, Xu J L, Tay L, Fang R X, Zhang L H (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol, 51(3): 903–912
Wei K, Tang D J, He Y Q, Feng J X, Jiang B L, Lu G T, Chen B, Tang J L (2007). hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol, 189(5): 2055–2062
Wengelnik K, Bonas U (1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol, 178(12): 3462–3469
Wengelnik K, Van den Ackerveken G, Bonas U (1996). HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact, 9(8): 704–712
Yamazaki A, Hirata H, Tsuyumu S (2008). HrpG regulates type II secretory proteins in Xanthomonas axonopodis pv. citri. J Gen Plant Pathol, 74: 138–150
Zhang S S, He Y Q, Xu L M, Chen BW, Jiang B L, Liao J, Cao J R, Liu D, Huang Y Q, Liang X X, Tang D J, Lu G T, Tang J L (2008). A putative colR(XC1049)-colS(XC1050) two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. Res Microbiol, 159(7–8): 569–578
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, FF., Wang, L. & Qian, W. Two-component signal transduction systems and regulation of virulence factors in Xanthomonas: a perspective. Front. Biol. 5, 495–506 (2010). https://doi.org/10.1007/s11515-010-0750-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11515-010-0750-x

