Frontiers of Biology in China

, Volume 2, Issue 3, pp 268–271 | Cite as

A modified resonant recognition model to predict protein-protein interaction

Research Article
  • 61 Downloads

Abstract

Proteins are fundamental components of all living cells and the protein-protein interaction plays an important role in vital movement. This paper briefly introduced the original Resonant Recognition Model (RRM), and then modified it by using the wavelet transform to acquire the Modified Resonant Recognition Model (MRRM). The key characteristic of the new model is that it can predict directly the protein-protein interaction from the primary sequence, and the MRRM is more suitable than the RRM for this prediction. The results of numerical experiments show that the MRRM is effective for predicting the protein-protein interaction.

Keywords

protein-protein interaction resonant recognition model modified resonant recognition model discrete wavelet transform characteristics frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel P L, Fields S (1997). The yeast two-hybrid system. In: Advances in Molecular Biology. New York: Oxford University PressGoogle Scholar
  2. Chafia H T, Qing F, Cosic I (2002). Protein sequence comparison based on the wavelet transform approach. Protein Engineering, 15(3): 193–203CrossRefGoogle Scholar
  3. Cosic I (1999). The resonant recognition model of macromolecular bioactivity. BioMethod, 8Google Scholar
  4. Daubechies I (1988). Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math, 41(7): 909–996CrossRefGoogle Scholar
  5. Daubechies I (1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. Philadelphia.Google Scholar
  6. Enright A J, Ililopoulos I, Kyrpides N C, Ouzounis C A (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature, 402(6757): 86–90PubMedCrossRefGoogle Scholar
  7. Huynen M, Snel B, Lathe W, Bork P (2000). Predicting protein function by genomic context: Quantitative evaluation and qualitative inferences. Genome Res, 10(8): 1204–1210PubMedCrossRefGoogle Scholar
  8. Joel R B, David A G (2001). Predicting protein-protein interactions from primary structure. Bioinformatics, 17(5): 455–460CrossRefGoogle Scholar
  9. Ladik J (1974). All valence electron band structures of simple periodic protein models. Int J Quantum Chemistry Quantum Biol Symp, 1: 65–69Google Scholar
  10. Marcotte E, Pellegrini M, Ng H L, Rice D W, Yeates T O, Eisenberg D (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285(5428): 751–753PubMedCrossRefGoogle Scholar
  11. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997). Correlated mutations contain information about protein-protein interaction. J Mol Biol, 271(4): 511–523PubMedCrossRefGoogle Scholar
  12. Pirogova E, Cosic I (1999). Proc.of IEEE EMBS VIC Australia, 203–206Google Scholar
  13. Prohofsky E W (1987). Vibrational modes of a DNA polymer at low temperature. Physical Review B, 36(6): 3449CrossRefGoogle Scholar
  14. Uetz P, Giot L, Cagney, G, Mansfield T A, Judson R S, Knight J R, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin, B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg J M (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403(6770): 623–627PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2007

Authors and Affiliations

  1. 1.College of SciencesShanghai UniversityShanghaiChina

Personalised recommendations