Advertisement

Frontiers of Biology in China

, Volume 1, Issue 3, pp 290–294 | Cite as

Karyotype analysis and physical mapping of 45S rDNA in eight species of Sophora, Robinia, and Amorpha

  • Liu Bo 
  • Chen Chengbin 
  • Li Xiulan 
  • Qi Liwang 
  • Han Suying 
Research Article

Abstract

The karyotype analysis and physical locations of 45S rDNA were carried out by means of fluorescence in situ hybridization in three species, and two forms of Sophora, two species of Robina, and one species of Amorpha. S. japonica L., S. japonica L. f. oligophylla Franch., S. japonica L. f. pendula Loud., and S. xanthantha C. Y. Ma. are all tetraploids with 2n = 28. There were four 45S rDNA sites in pericentromeric regions of two pairs of chromosomes in each of them. S. rubriflora Tsoong. is a triploid with 2n = 21, and three sites were located in each satellite of group 5 chromosomes. In R. pseudoacacia L. (2n = 2x = 22), we examined four intensive signals in telomeric regions of two pairs of satellite chromosomes. In R. hispida L. (2n = 2x = 30), there were four other signals in centromeric regions besides those like in R. pseudoacacia. Amorpha fruticosa L. has most chromosomes (2n = 40) among the eight materials, however, there were only six 45S rDNA loci and they laid in centromeric regions, and satellites of three pairs of chromosomes. 45S rDNA is a valuable chromosomal landmark in karyotype analysis. The distribution and genomic organization of rDNA in the three genera were also discussed.

Keywords

Sophora Robinia Amorpha karyotype analysis 45S rDNA fluorescence in situ hybridization (FISH) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E., Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and ape. Proc Natl. Acad. Sci. USA, 1980, 77: 7323–7327PubMedCrossRefGoogle Scholar
  2. Arumuganathan K., Martin G. B., Telenius H., Tanksley S. D., Earle E. D., Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Molecular and General Genetics, 1994, 242: 551–558PubMedCrossRefGoogle Scholar
  3. Chen R. Y., Song W. Q., Li X. L., A new method of plant mitosis chromosome spread. Acta Botanica Sinica, 1979, 21: 297–298 [陈瑞阳, 宋文芹, 李秀兰, 植物有丝分裂染色体标本制备的新方法. 植物学报, 1979, 21: 297–298]Google Scholar
  4. Chen R. Y., Song W. Q., Li X. L., Li M. X., Liang G. L., Chen C. B., Chromosome Atlas of Major Economic Plants Genome in China III. Beijing: Science Press, 2003, 281–310 [陈瑞阳, 宋文芹, 李秀兰, 李懋学, 梁国鲁, 陈成彬, 中国主要经济植物基因组染色体图谱 (第三册). 北京: 科学出版社, 2003, 281–310]Google Scholar
  5. Chen T. C., Chen P. Y., Fang Y. Y., Zheng C. Z., Chang R. W., Ding C. S. Li J.L., Ma C. Y., Wei Z., Flora Reipublicae Popularis Sinicae Tomus 40. Beijing: Science Press, 1994, 64–231 [陈德昭, 陈邦余, 方云忆, 郑朝宗, 张若蕙, 丁陈森, 李娇兰, 马其云, 韦直, 中国植物志 (第四十卷). 北京: 科学出版社, 1994, 64–231]Google Scholar
  6. Galasso I., Saponetti L. S., Pignone D., Cytotaxonomic studies in Vigia. IV. Variation of the number of active and silent rDNA sites in Vigna unguiculata populations. Caryologia, 1998, 51(2): 95–104Google Scholar
  7. Gu Z. J. and Xiao H., Physical mapping of the 18S–26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Plant Science, 2003, 164: 279–285CrossRefGoogle Scholar
  8. Hajdera I., Siwinska D., Hasterok R., Maluszynska J., Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor. Appl. Genet, 2003, 107: 988–996PubMedCrossRefGoogle Scholar
  9. Hanson R. E., Islam-Faridi M. N., Percival E. A., Crane C. F., Ji Y., McKnight T. D., Stelly D. M., Price H. J., Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma, 1996, 105: 55–61PubMedCrossRefGoogle Scholar
  10. Koo D. H., Hur Y. K., Jin D. C., Bang J. W., Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Molecules and Cells, 2002, 13(3): 413–418PubMedGoogle Scholar
  11. Lim K. B., Wennekes J., Jong J. H., Jacobsen E., Tuyl J. M., Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome, 2001, 44: 911–918PubMedCrossRefGoogle Scholar
  12. Lima-De-Faria A., The chromosome field. I. Prediction of the location of ribosomal cistrons. Hereditas, 1976, 83: 1–22CrossRefGoogle Scholar
  13. Maluszynska J. and Heslop-Harrison J. S., Physical mapping of rDNA loci in Brassica species. Genome, 1993, 36: 774–781PubMedGoogle Scholar
  14. Muravenko O. V., Lemesh V. A., Samatadze T. E., Amosova A. V., Grushetskaya Z. E., Popov K. V., Semenova O. Yu., Khotyuleva L. V., Zelenin A. V., Genome comparisions with chromosomal and molecular markers for three closely related flax species and their hybrids. Russian Journal of Genetics, 2003, 39(4): 414–421CrossRefGoogle Scholar
  15. Naganowska B. and Zielińska A., Physical mapping of 18S–25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization. Cellular & Molecular Biology Letters, 2002, 7: 665–670Google Scholar
  16. Pedersen C. and Linde-Laursen, Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Research, 1994, 2: 65–71PubMedCrossRefGoogle Scholar
  17. Qi Z. X., Zeng H., Li X. L., Chen C. B., Song W. Q., Chen R. Y., The molecular characterization of maize B chromosome specific AFLPs. Cell Research, 2002, 12(1): 63–68PubMedCrossRefGoogle Scholar
  18. Raina S. N., Mukai Y., Kawaguchi K., Goel S., Jain A., Physical mapping of 18S–5.8S–26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor. Appl. Genet, 2001, 103: 839–845CrossRefGoogle Scholar
  19. Singh R. J., Kim H. H., Hymowitz T., Distribution of rDNA loci in the genus Glycine Willd. Theor. Appl. Genet, 2001, 103: 212–218CrossRefGoogle Scholar
  20. Stebbins G. L., Chromosomal Evolution in Higher Plants. London: Edward Arnold, 1971, 85–104Google Scholar
  21. Taketa S., Harrison G. E., Heslop-Harrison J. S., Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor. Appl. Genet, 1999, 98: 1–9CrossRefGoogle Scholar
  22. Thomas H. M., Harper J. A., Morgan W. G., Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Research, 2001, 9: 585–590PubMedCrossRefGoogle Scholar
  23. Torrell M., Cerbah M., Siljak-Yakovlev S., Vallès J., Molecular cytogenetics of the genus Artemisia (Asteraceae, Anthemideae): fluorochrome banding and fluorescence in situ hybridization. I. Subgenus Seriphidium and related taxa. Plant Syst. Evol., 2003, 239: 141–153CrossRefGoogle Scholar
  24. Vanzela A. L. L., Ruas C. F., Oliveira M. F., Ruas P. M., Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetica, 2002, 114: 105–111PubMedCrossRefGoogle Scholar
  25. Zoldos V., Papes D., Cerbah M., Panaud O., Besendorfer V., Siljak-Yakovlev S., Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor. Appl. Genet, 1999, 99: 969–977CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  • Liu Bo 
    • 1
  • Chen Chengbin 
    • 1
  • Li Xiulan 
    • 1
  • Qi Liwang 
    • 2
  • Han Suying 
    • 2
  1. 1.Department of Biology, College of Life SciencesNankai UniversityTianjinChina
  2. 2.Laboratory of Cell Biology, Research Institute of ForestryChinese Academy of ForestryBeijingChina

Personalised recommendations