Skip to main content
Log in

Singular hermitian metrics on holomorphic vector bundles

Arkiv för Matematik


We introduce and study the notion of singular hermitian metrics on holomorphic vector bundles, following Berndtsson and Păun. We define what it means for such a metric to be positively and negatively curved in the sense of Griffiths and investigate the assumptions needed in order to locally define the curvature Θh as a matrix of currents. We then proceed to show that such metrics can be regularised in such a way that the corresponding curvature tensors converge weakly to Θh. Finally we define what it means for h to be strictly negatively curved in the sense of Nakano and show that it is possible to regularise such metrics with a sequence of smooth, strictly Nakano negative metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. 169 (2009), 531–560.

    Article  MathSciNet  Google Scholar 

  2. Berndtsson, B. and Păun, M., Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2008), 341–378.

    Article  MathSciNet  MATH  Google Scholar 

  3. de Cataldo, M. A. A., Singular Hermitian metrics on vector bundles, J. Reine Angew. Math. 502 (1998), 93–122.

    MathSciNet  Google Scholar 

  4. Demailly, J.-P., Estimations L 2 pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér. 15 (1982), 457–511.

    MathSciNet  MATH  Google Scholar 

  5. Demailly, J.-P., Singular Hermitian metrics on positive line bundles, in Complex Algebraic Varieties (Bayreuth, 1990), Lecture Notes in Math. 1507, pp. 87–104, Springer, Berlin, 1992.

    Chapter  Google Scholar 

  6. Nadel, A. M., Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. 132 (1990), 549–596.

    Article  MathSciNet  MATH  Google Scholar 

  7. Raufi, H., The Nakano vanishing theorem and a vanishing theorem of Demailly–Nadel type for vector bundles, Preprint, Göteborg, 2012. arXiv:1212.4417.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hossein Raufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raufi, H. Singular hermitian metrics on holomorphic vector bundles. Ark Mat 53, 359–382 (2015).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: