Skip to main content
Log in

Resonance-free region in scattering by a strictly convex obstacle

Arkiv för Matematik

Cite this article

Abstract

We prove the existence of a resonance-free region in scattering by a strictly convex obstacle \(\mathcal{O}\) with the Robin boundary condition \(\partial_{\nu}u+\gamma u|_{\partial\mathcal{O}}=0\). More precisely, we show that the scattering resonances lie below a cubic curve ℑζ=−S|ζ|1/3+C. The constant S is the same as in the case of the Neumann boundary condition γ=0. This generalizes earlier results on cubic pole-free regions obtained for the Dirichlet boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar, J. and Combes, J. M., A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269–279.

    Article  MATH  MathSciNet  Google Scholar 

  2. Balslev, E. and Combes, J. M., Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys. 22 (1971), 280–294.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardos, C., Lebeau, G. and Rauch, J., Scattering frequencies and Gevrey 3 singularities, Invent. Math. 90 (1987), 77–114.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cordoba, A. and Fefferman, C., Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), 979–1006.

    Article  MATH  MathSciNet  Google Scholar 

  5. Delort, J.-M., F.B.I. Transformation. Second Microlocalization and Semilinear Caustics, Lecture Notes in Math. 1522, Springer, Berlin–Heidelberg, 1992.

    MATH  Google Scholar 

  6. Folland, G., Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, NJ, 1989.

    MATH  Google Scholar 

  7. Hargé, T. and Lebeau, G., Diffraction par un convexe, Invent. Math. 118 (1994), 161–196.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hörmander, L., The Analysis of Linear Partial Differential Operators, I–IV, Springer, Berlin–Heidelberg, 1983, 1985.

    Google Scholar 

  9. Lascar, B. and Lascar, R., FBI transforms in Gevrey classes, J. Anal. Math. 72 (1997), 105–125.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lax, P. and Phillips, R., A logarithmic bound on the location of the poles of the scattering matrix, Arch. Ration. Mech. Anal. 40 (1971), 268–280.

    Article  MATH  MathSciNet  Google Scholar 

  11. Lebeau, G., Régularité Gevrey 3 pour la diffraction, Comm. Partial Differential Equations 9 (1984), 1437–1494.

    Article  MATH  MathSciNet  Google Scholar 

  12. Martinez, A., An Introduction to Semiclassical and Microlocal Analysis, Springer, New York, 2002.

    Book  MATH  Google Scholar 

  13. Melrose, R. B., Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), 43–59.

    Article  MATH  MathSciNet  Google Scholar 

  14. Morawetz, C. S., Ralston, J. V. and Strauss, W. A., Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977), 447–508.

    Article  MATH  MathSciNet  Google Scholar 

  15. Popov, G., Some estimates of Green’s functions in the shadow, Osaka J. Math. 24 (1987), 1–12.

    MATH  MathSciNet  Google Scholar 

  16. Sjöstrand, J., Singularités analytiques microlocales, Astérisque 95, Soc. Math. France, Paris, 1982.

    Google Scholar 

  17. Sjöstrand, J., Density of resonances for strictly convex analytic obstacles, Canad. J. Math. 48 (1996), 397–447.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sjöstrand, J. and Zworski, M., Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769.

    Article  MATH  MathSciNet  Google Scholar 

  19. Sjöstrand, J. and Zworski, M., Lower bounds on the number of scattering poles, Comm. Partial Differential Equations 18 (1993), 847–858.

    Article  MATH  MathSciNet  Google Scholar 

  20. Sjöstrand, J. and Zworski, M., Estimates on the number of scattering poles for strictly convex obstacles near the real axis, Ann. Inst. Fourier (Grenoble) 43 (1993), 769–790.

    Article  MATH  MathSciNet  Google Scholar 

  21. Sjöstrand, J. and Zworski, M., The complex scaling method for scattering by strictly convex obstacles, Ark. Mat. 33 (1995), 135–172.

    Article  MATH  MathSciNet  Google Scholar 

  22. Sjöstrand, J. and Zworski, M., Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191–253.

    Article  MATH  MathSciNet  Google Scholar 

  23. Stefanov, P., Sharp upper bounds on the number of the scattering poles, J. Funct. Anal. 231 (2006), 111–142.

    Article  MATH  MathSciNet  Google Scholar 

  24. Tang, S.-H. and Zworski, M., Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305–1334.

    Article  MATH  MathSciNet  Google Scholar 

  25. Vainberg, B. R., On exterior elliptic problems depending on a spectral parameter, and the asymptotic behavior for large time of solutions of nonstationary problems, Mat. Sb. 92 (1973), 224–241 (Russian). English transl.: Math. USSR-Sb. 21 (1973), 221–239.

    MathSciNet  Google Scholar 

  26. Watson, G. N., The diffraction of electric waves by the Earth, Proc. R. Soc. Lond. Ser. A 95 (1918), 83–99.

    Article  MATH  Google Scholar 

  27. Wunsch, J. and Zworski, M., The FBI transform on compact C manifolds, Trans. Amer. Math. Soc. 353 (2000), 1151–1167.

    Article  MathSciNet  Google Scholar 

  28. Zworski, M., Semiclassical Analysis, Graduate Studies in Mathematics 138, Amer. Math. Soc., Providence, RI, 2012.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jin.

Additional information

The author would like to thank Maciej Zworski for the encouragement and advices during the preparation of this paper. Partial support by the National Science Foundation grant DMS-1201417 is also gratefully acknowledged.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, L. Resonance-free region in scattering by a strictly convex obstacle. Ark Mat 52, 257–289 (2014). https://doi.org/10.1007/s11512-013-0185-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-013-0185-0

Keywords

Navigation