Duality and distance formulas in spaces defined by means of oscillation

Abstract

For the classical space of functions with bounded mean oscillation, it is well known that \(\operatorname{VMO}^{**} = \operatorname{BMO}\) and there are many characterizations of the distance from a function f in \(\operatorname{BMO}\) to \(\operatorname{VMO}\). When considering the Bloch space, results in the same vein are available with respect to the little Bloch space. In this paper such duality results and distance formulas are obtained by pure functional analysis. Applications include general Möbius invariant spaces such as Q K -spaces, weighted spaces, Lipschitz–Hölder spaces and rectangular \(\operatorname{BMO}\) of several variables.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aleman, A. and Simbotin, A.-M., Estimates in Möbius invariant spaces of analytic functions, Complex Var. Theory Appl. 49 (2004), 487–510.

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Anderson, J. M. and Duncan, J., Duals of Banach spaces of entire functions, Glasg. Math. J. 32 (1990), 215–220.

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Arazy, J., Fisher, S. D. and Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145.

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Attele, K. R. M., Interpolating sequences for the derivatives of Bloch functions, Glasg. Math. J. 34 (1992), 35–41.

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Axler, S. and Shapiro, J. H., Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), 161–183.

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Bierstedt, K. D. and Summers, W. H., Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79.

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bierstedt, K. D., Bonet, J. and Galbis, A., Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271–297.

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Carmona, J. and Cufí, J., On the distance of an analytic function to VMO, J. Lond. Math. Soc. 34 (1986), 52–66.

    MATH  Article  Google Scholar 

  9. 9.

    Conway, J. B., A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathematics 96, Springer, New York, 1990.

    Google Scholar 

  10. 10.

    Czipszer, J. and Gehér, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220.

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Dobrakov, I., On integration in Banach spaces. I, Czechoslovak Math. J. 20 (1970), 511–536.

    MathSciNet  Google Scholar 

  12. 12.

    Dobrakov, I., On integration in Banach spaces. II, Czechoslovak Math. J. 20 (1970), 680–695.

    MathSciNet  Google Scholar 

  13. 13.

    Dobrakov, I., On representation of linear operators on C 0(T,X), Czechoslovak Math. J. 21 (1971), 13–30.

    MathSciNet  Google Scholar 

  14. 14.

    Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of Q K -type, Illinois J. Math. 46 (2002), 1233–1258.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Ferguson, S. H. and Sadosky, C., Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures, J. Anal. Math. 81 (2000), 239–267.

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    García, D., Maestre, M. and Rueda, P., Weighted spaces of holomorphic functions on Banach spaces, Studia Math. 138 (2000), 1–24.

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Garnett, J. B., Bounded Analytic Functions, Revised 1st ed., Graduate Texts in Mathematics 236, Springer, New York, 2007.

    Google Scholar 

  18. 18.

    Godefroy, G., Existence and uniqueness of isometric preduals: a survey, in Banach Space Theory (Iowa City, IA, 1987 ), Contemp. Math. 85, pp. 131–193, Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  19. 19.

    Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950.

    Google Scholar 

  20. 20.

    Kalton, N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171–217.

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Lacey, M. T., Terwilleger, E. and Wick, B. D., Remarks on product VMO, Proc. Amer. Math. Soc. 134 (2006), 465–474.

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Maz′ya, V. G. and Shaposhnikova, T. O., Theory of Sobolev Multipliers, Grundlehren der Mathematischen Wissenschaften 337, Springer, Berlin, 2009.

    Google Scholar 

  23. 23.

    Nara, C., Uniqueness of the predual of the Bloch space and its strongly exposed points, Illinois J. Math. 34 (1990), 98–107.

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Rubel, L. A. and Shields, A. L., The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. Ser. A 11 (1970), 276–280.

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Shields, A. L. and Williams, D. L., Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302.

    MathSciNet  Google Scholar 

  26. 26.

    Stegenga, D. A. and Stephenson, K., Sharp geometric estimates of the distance to VMOA, in The Madison Symposium on Complex Analysis (Madison, WI, 1991 ), Contemp. Math. 137, pp. 421–432, Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  27. 27.

    Tjani, M., Distance of a Bloch function to the little Bloch space, Bull. Aust. Math. Soc. 74 (2006), 101–119.

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Zinger, I., Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), 301–315 (Russian).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karl-Mikael Perfekt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perfekt, K. Duality and distance formulas in spaces defined by means of oscillation. Ark Mat 51, 345–361 (2013). https://doi.org/10.1007/s11512-012-0175-7

Download citation

Keywords

  • Banach Space
  • Bergman Space
  • Bloch Space
  • Invariant Space
  • Weighted Bergman Space