Advertisement

Arkiv för Matematik

, Volume 51, Issue 2, pp 345–361 | Cite as

Duality and distance formulas in spaces defined by means of oscillation

  • Karl-Mikael Perfekt
Article

Abstract

For the classical space of functions with bounded mean oscillation, it is well known that \(\operatorname{VMO}^{**} = \operatorname{BMO}\) and there are many characterizations of the distance from a function f in \(\operatorname{BMO}\) to \(\operatorname{VMO}\). When considering the Bloch space, results in the same vein are available with respect to the little Bloch space. In this paper such duality results and distance formulas are obtained by pure functional analysis. Applications include general Möbius invariant spaces such as Q K -spaces, weighted spaces, Lipschitz–Hölder spaces and rectangular \(\operatorname{BMO}\) of several variables.

Keywords

Banach Space Bergman Space Bloch Space Invariant Space Weighted Bergman Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleman, A. and Simbotin, A.-M., Estimates in Möbius invariant spaces of analytic functions, Complex Var. Theory Appl. 49 (2004), 487–510. MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Anderson, J. M. and Duncan, J., Duals of Banach spaces of entire functions, Glasg. Math. J. 32 (1990), 215–220. MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arazy, J., Fisher, S. D. and Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145. MathSciNetzbMATHGoogle Scholar
  4. 4.
    Attele, K. R. M., Interpolating sequences for the derivatives of Bloch functions, Glasg. Math. J. 34 (1992), 35–41. MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Axler, S. and Shapiro, J. H., Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), 161–183. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bierstedt, K. D. and Summers, W. H., Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79. MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bierstedt, K. D., Bonet, J. and Galbis, A., Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271–297. MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Carmona, J. and Cufí, J., On the distance of an analytic function to VMO, J. Lond. Math. Soc. 34 (1986), 52–66. zbMATHCrossRefGoogle Scholar
  9. 9.
    Conway, J. B., A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathematics 96, Springer, New York, 1990. zbMATHGoogle Scholar
  10. 10.
    Czipszer, J. and Gehér, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220. MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dobrakov, I., On integration in Banach spaces. I, Czechoslovak Math. J. 20 (1970), 511–536. MathSciNetGoogle Scholar
  12. 12.
    Dobrakov, I., On integration in Banach spaces. II, Czechoslovak Math. J. 20 (1970), 680–695. MathSciNetGoogle Scholar
  13. 13.
    Dobrakov, I., On representation of linear operators on C 0(T,X), Czechoslovak Math. J. 21 (1971), 13–30. MathSciNetGoogle Scholar
  14. 14.
    Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of Q K-type, Illinois J. Math. 46 (2002), 1233–1258. MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ferguson, S. H. and Sadosky, C., Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures, J. Anal. Math. 81 (2000), 239–267. MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    García, D., Maestre, M. and Rueda, P., Weighted spaces of holomorphic functions on Banach spaces, Studia Math. 138 (2000), 1–24. MathSciNetzbMATHGoogle Scholar
  17. 17.
    Garnett, J. B., Bounded Analytic Functions, Revised 1st ed., Graduate Texts in Mathematics 236, Springer, New York, 2007. Google Scholar
  18. 18.
    Godefroy, G., Existence and uniqueness of isometric preduals: a survey, in Banach Space Theory (Iowa City, IA, 1987 ), Contemp. Math. 85, pp. 131–193, Amer. Math. Soc., Providence, RI, 1989. CrossRefGoogle Scholar
  19. 19.
    Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950. zbMATHGoogle Scholar
  20. 20.
    Kalton, N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171–217. MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lacey, M. T., Terwilleger, E. and Wick, B. D., Remarks on product VMO, Proc. Amer. Math. Soc. 134 (2006), 465–474. MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Maz′ya, V. G. and Shaposhnikova, T. O., Theory of Sobolev Multipliers, Grundlehren der Mathematischen Wissenschaften 337, Springer, Berlin, 2009. zbMATHGoogle Scholar
  23. 23.
    Nara, C., Uniqueness of the predual of the Bloch space and its strongly exposed points, Illinois J. Math. 34 (1990), 98–107. MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rubel, L. A. and Shields, A. L., The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. Ser. A 11 (1970), 276–280. MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shields, A. L. and Williams, D. L., Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MathSciNetGoogle Scholar
  26. 26.
    Stegenga, D. A. and Stephenson, K., Sharp geometric estimates of the distance to VMOA, in The Madison Symposium on Complex Analysis (Madison, WI, 1991 ), Contemp. Math. 137, pp. 421–432, Amer. Math. Soc., Providence, RI, 1992. CrossRefGoogle Scholar
  27. 27.
    Tjani, M., Distance of a Bloch function to the little Bloch space, Bull. Aust. Math. Soc. 74 (2006), 101–119. MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zinger, I., Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), 301–315 (Russian). MathSciNetzbMATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2012

Authors and Affiliations

  1. 1.Centre for Mathematical SciencesLund UniversityLundSweden

Personalised recommendations