Skip to main content
Log in

Persistence of Anderson localization in Schrödinger operators with decaying random potentials

  • Published:
Arkiv för Matematik

Abstract

We show persistence of both Anderson and dynamical localization in Schrödinger operators with non-positive (attractive) random decaying potential. We consider an Anderson-type Schrödinger operator with a non-positive ergodic random potential, and multiply the random potential by a decaying envelope function. If the envelope function decays slower than |x|-2 at infinity, we prove that the operator has infinitely many eigenvalues below zero. For envelopes decaying as |x| at infinity, we determine the number of bound states below a given energy E<0, asymptotically as α↓0. To show that bound states located at the bottom of the spectrum are related to the phenomenon of Anderson localization in the corresponding ergodic model, we prove: (a) these states are exponentially localized with a localization length that is uniform in the decay exponent α; (b) dynamical localization holds uniformly in α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Elgart, A., Naboko, S., Schenker, J. H. and Stolz, G., Moment analysis for localization in random Schrödinger operators, Invent. Math. 163 (2006), 343–413.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenman, M., Sims, R. and Warzel, S., Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs, Probab. Theory Related Fields 136 (2006), 363–394.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourgain, J., On random Schrödinger operators on Z2, Discrete Contin. Dyn. Syst. 8 (2002), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J., Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena, in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1807, pp. 70–98, Springer, Berlin–Heidelberg, 2003.

    Google Scholar 

  5. Bourgain, J. and Kenig, C. E., On localization in the continuous Anderson–Bernoulli model in higher dimension, Invent. Math. 161 (2005), 389–426.

    Article  MATH  MathSciNet  Google Scholar 

  6. Boutet de Monvel, A., Stollmann, P. and Stolz, G., Absence of continuous spectral types for certain non-stationary random Schrödinger operators, Ann. Henri Poincaré 6 (2005), 309–326.

    Article  MATH  MathSciNet  Google Scholar 

  7. Carmona, R. and Lacroix, J., Spectral Theory of Random Schrödinger Operators, Probability and its Applications, Birkhäuser, Boston, MA, 1990.

  8. Chen, T., Localization lengths for Schrödinger operators on ℤ2 with decaying random potentials, Int. Math. Res. Not. 2005:54 (2005), 3341–3373.

    Article  MATH  Google Scholar 

  9. Combes, J.-M. and Hislop, P. D., Localization for some continuous, random Hamiltonians in d-dimensions, J. Funct. Anal. 124 (1994), 149–180.

    Article  MATH  MathSciNet  Google Scholar 

  10. Combes, J. M., Hislop, P. D. and Klopp, F., Hölder continuity of the integrated density of states for some random operators at all energies, Int. Math. Res. Not. 2003:4 (2003), 179–209.

    Article  MATH  MathSciNet  Google Scholar 

  11. Combes, J. M., Hislop, P. D. and Klopp, F., An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, Preprint, 2006. arXiv:math-ph/0605029.

  12. Combes, J. M., Hislop, P. D. and Nakamura, S., The L p-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys. 218 (2001), 113–130.

    Article  MATH  MathSciNet  Google Scholar 

  13. Damanik, D., Hundertmark, D., Killip, R. and Simon, B., Variational estimates for discrete Schrödinger operators with potentials of indefinite sign, Comm. Math. Phys. 238 (2003), 545–562.

    Article  MATH  MathSciNet  Google Scholar 

  14. Damanik, D., Hundertmark, D. and Simon, B., Bound states and the Szegő condition for Jacobi matrices and Schrödinger operators, J. Funct. Anal. 205 (2003), 357–379.

    Article  MATH  MathSciNet  Google Scholar 

  15. Denisov, S. A., Absolutely continuous spectrum of multidimensional Schrödinger operator, Int. Math. Res. Not. 2004:74 (2004), 3963–3982.

    Article  MATH  MathSciNet  Google Scholar 

  16. Froese, R., Hasler, D. and Spitzer, W., Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein’s theorem, Comm. Math. Phys. 269 (2007), 239–257.

    Article  MATH  MathSciNet  Google Scholar 

  17. Germinet, F., Hislop, P. and Klein, A., Localization for the Schrödinger operator with a Poisson random potential, to appear in J. Europ. Math. Soc. arXiv:math-ph/0603033.

  18. Germinet, F., Hislop, P. and Klein, A., Localization at low energies for attractive Poisson random Schrödinger operators, to appear in CRM Proceedings & Lecture Notes 42, Amer. Math. Soc., Providence, RI, 2007. arXiv:math-ph/0603035.

  19. Germinet, F. and Klein, A., Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), 415–448.

    Article  MATH  MathSciNet  Google Scholar 

  20. Germinet, F. and Klein, A., Explicit finite volume criteria for localization in continuous random media and applications, Geom. Funct. Anal. 13 (2003), 1201–1238.

    Article  MATH  MathSciNet  Google Scholar 

  21. Germinet, F. and Klein, A., High disorder localization for random Schrödinger operators through explicit finite volume criteria, Markov Process. Related Fields 9 (2003), 633–650.

    MATH  MathSciNet  Google Scholar 

  22. Germinet, F. and Klein, A., New characterizations of the region of complete localization for random Schrödinger operators, J. Stat. Phys. 122 (2006), 73–94.

    Article  MATH  MathSciNet  Google Scholar 

  23. Germinet, F., Klein, A. and Schenker, J. H., Dynamical delocalization in random Landau Hamiltonians, to appear in Ann. Math. arXiv:math-ph/0412070.

  24. Hundertmark, D. and Kirsch, W., Spectral theory of sparse potentials, in Stochastic Processes, Physics and Geometry: New Interplays, (Leipzig, 1999), CMS Conf. Proc. 28, pp. 213–238, Amer. Math. Soc., Providence, RI, 2000.

  25. Jitomirskaya, S., Schulz-Baldes, H. and Stolz, G., Delocalization in random polymer models, Comm. Math. Phys. 233 (2003), 27–48.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kirsch, W., Krishna, M. and Obermeit, J., Anderson model with decaying randomness: mobility edge, Math. Z. 235 (2000), 421–433.

    Article  MATH  MathSciNet  Google Scholar 

  27. Klein, A., Extended states in the Anderson model on the Bethe lattice, Adv. Math. 133 (1998), 163–184.

    Article  MATH  MathSciNet  Google Scholar 

  28. Klopp, F., Localization for some continuous random Schrödinger operators, Comm. Math. Phys. 167 (1995), 553–569.

    Article  MATH  MathSciNet  Google Scholar 

  29. Klopp, F., Weak disorder localization and Lifshitz tails, Comm. Math. Phys. 232 (2002), 125–155.

    Article  MATH  MathSciNet  Google Scholar 

  30. Klopp, F., Weak disorder localization and Lifshitz tails: continuous Hamiltonians, Ann. Henri Poincaré 3 (2002), 711–737.

    Article  MATH  MathSciNet  Google Scholar 

  31. Krishna, M., Anderson model with decaying randomness existence of extended states, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 285–294.

    MATH  MathSciNet  Google Scholar 

  32. Pastur, L. and Figotin, A., Spectra of Random and Almost-Periodic Operators, Grundlehren der Mathematischen Wissenschaften 297, Springer, Berlin–Heidelberg, 1992.

    MATH  Google Scholar 

  33. Reed, M. and Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.

  34. Rodnianski, I. and Schlag, W., Classical and quantum scattering for a class of long range random potentials, Int. Math. Res. Not. 2003:5 (2003), 243–300.

    Article  MATH  MathSciNet  Google Scholar 

  35. Stollmann, P., Caught by Disorder, Progress in Mathematical Physics 20, Birkhäuser, Boston, MA, 2001.

    MATH  Google Scholar 

  36. Wang, W.-M., Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder, Invent. Math. 146 (2001), 365–398.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figotin, A., Germinet, F., Klein, A. et al. Persistence of Anderson localization in Schrödinger operators with decaying random potentials. Ark Mat 45, 15–30 (2007). https://doi.org/10.1007/s11512-006-0039-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-006-0039-0

Keywords

Navigation