Skip to main content
Log in

Boundedness for pseudodifferential operators on multivariate α-modulation spaces

  • Published:
Arkiv för Matematik

Abstract

The α-modulation spaces M s p,q(R d), α∈[0,1], form a family of spaces that contain the Besov and modulation spaces as special cases. In this paper we prove that a pseudodifferential operator σ(x,D) with symbol in the Hörmander class S b ρ,0 extends to a bounded operator σ(x,D):M s p,q(R d)→M s-b p,q(R d) provided 0≤α≤ρ≤1, and 1<p,q<∞. The result extends the well-known result that pseudodifferential operators with symbol in the class S b 1,0 maps the Besov space B s p,q(R d) into B s-b p,q(R d).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, Á. and Okoudjou, K., Bilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl.10 (2004), 301–313.

    Article  MATH  MathSciNet  Google Scholar 

  2. Boggiatto, P., Localization operators with Lp symbols on modulation spaces, in Advances in Pseudo-Differential Operators, Oper. Theory Adv. Appl. 155, pp. 149–163, Birkhäuser, Basel, 2004.

    Google Scholar 

  3. Boggiatto, P., Buzano, E. and Rodino, L., Global Hypoellipticity and Spectral Theory, Mathematical Research 92, Akademie Verlag, Berlin, 1996.

    MATH  Google Scholar 

  4. Borup, L., Pseudodifferential operators on α-modulation spaces, J. Funct. Spaces Appl.2 (2004), 107–123.

    MATH  MathSciNet  Google Scholar 

  5. Córdoba, A. and Fefferman, C., Wave packets and Fourier integral operators, Comm. Partial Differential Equations3 (1978), 979–1005.

    Article  MATH  MathSciNet  Google Scholar 

  6. Feichtinger, H. G., Modulation spaces on locally compact abelian groups, Technical report, University of Vienna, 1983.

  7. Feichtinger, H. G., Banach spaces of distributions defined by decomposition methods, II, Math. Nachr.132 (1987), 207–237.

    Article  MATH  MathSciNet  Google Scholar 

  8. Feichtinger, H. G. and Gröbner, P., Banach spaces of distributions defined by decomposition methods, I, Math. Nachr.123 (1985), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gröbner, P., Banachräume glatter Funktionen und Zerlegungsmethoden, Ph.D. thesis, University of Vienna, 1992.

  10. Gröchenig, K., Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, 2001.

  11. Gröchenig, K. and Heil, C., Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory34 (1999), 439–457.

    Article  MathSciNet  Google Scholar 

  12. Hörmander, L., The Analysis of Linear Partial Differential Operators, III, Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften 274, Springer, Berlin, 1985.

    Google Scholar 

  13. Labate, D., Pseudodifferential operators on modulation spaces, J. Math. Anal. Appl.262 (2001), 242–255.

    Article  MATH  MathSciNet  Google Scholar 

  14. Nazaret, B. and Holschneider, M., An interpolation family between Gabor and wavelet transformations: application to differential calculus and construction of anisotropic Banach spaces, in Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations, Oper. Theory Adv. Appl. 145, pp. 363–394, Birkhäuser, Basel, 2003.

    Google Scholar 

  15. Päivärinta, L. and Somersalo, E., A generalization of the Calderón–Vaillancourt theorem to Lp and hp, Math. Nachr.138 (1988), 145–156.

    Article  MATH  MathSciNet  Google Scholar 

  16. Pilipović, S. and Teofanov, N., On a symbol class of elliptic pseudodifferential operators, Bull. Cl. Sci. Math. Nat. Sci. Math.27 (2002), 57–68.

    Google Scholar 

  17. Pilipović, S. and Teofanov, N., Pseudodifferential operators on ultra-modulation spaces, J. Funct. Anal.208 (2004), 194–228.

    Article  MATH  MathSciNet  Google Scholar 

  18. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  19. Tachizawa, K., The boundedness of pseudodifferential operators on modulation spaces, Math. Nachr.168 (1994), 263–277.

    Article  MATH  MathSciNet  Google Scholar 

  20. Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal.207 (2004), 399–429.

    Article  MATH  MathSciNet  Google Scholar 

  21. Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus, II, Ann. Global Anal. Geom.26 (2004), 73–106.

    Article  MATH  MathSciNet  Google Scholar 

  22. Triebel, H., Theory of Function Spaces, Monographs in Mathematics 78, Birkhäuser, Basel, 1983.

    Google Scholar 

  23. Yamazaki, M., A quasihomogeneous version of paradifferential operators, II, a symbol calculus, J. Fac. Sci. Univ. Tokyo Sect. IA Math.33 (1986), 311–345.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Borup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borup, L., Nielsen, M. Boundedness for pseudodifferential operators on multivariate α-modulation spaces . Ark Mat 44, 241–259 (2006). https://doi.org/10.1007/s11512-006-0020-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-006-0020-y

Keywords

Navigation