Skip to main content
Log in

Local Hodge theory of Soergel bimodules

  • Published:
Acta Mathematica

Abstract

We prove the local hard Lefschetz theorem and local Hodge–Riemann bilinear relations for Soergel bimodules. Using results of Soergel and Kübel, one may deduce an algebraic proof of the Jantzen conjectures. We observe that the Jantzen filtration may depend on the choice of non-dominant regular deformation direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbasch D.: Filtrations on Verma modules. Ann. Sci. École Norm. Sup., 16, 489–494 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beilinson, A. & Bernstein, J., A proof of Jantzen conjectures, in I. M. Gel’fand Seminar, Adv. Soviet Math., 16, pp. 1–50. Amer. Math. Soc., Providence, RI, 1993.

  3. Beilinson A., Ginzburg V., Soergel W.: Koszul duality patterns in representation theory. J. Amer. Math. Soc., 9, 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, J. & Lunts, V., Equivariant Sheaves and Functors. Lecture Notes in Mathematics, 1578. Springer, Berlin–Heidelberg, 1994.

  5. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput., 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braden T., MacPherson R.: From moment graphs to intersection cohomology. Math. Ann., 321, 533–551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M., Equivariant cohomology and equivariant intersection theory, in Representation Theories and Algebraic Geometry (Montreal, QC, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, pp. 1–37. Kluwer, Dordrecht, 1998.

  8. de Cataldo M.A.A., Migliorini L.: The hard Lefschetz theorem and the topology of semismall maps. Ann. Sci. École Norm. Sup., 35, 759–772 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Cataldo M.A.A., Migliorini L.: The Hodge theory of algebraic maps. Ann. Sci. École Norm. Sup., 38, 693–750 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elias, B. & Khovanov, M., Diagrammatics for Soergel categories. Int. J. Math. Math. Sci., 2010 (2010), Art. ID 978635, 58 pp.

  11. Elias B., Williamson G.: The Hodge theory of Soergel bimodules. Ann. of Math., 180, 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elias B., Williamson G.: Soergel calculus. Represent. Theory, 20, 295–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiebig, P., Kazhdan–Lusztig combinatorics via sheaves on Bruhat graphs, in Algebraic and Geometric Combinatorics, Contemp. Math., 423, pp. 195–204. Amer. Math. Soc., Providence, RI, 2006.

  14. Fiebig P.: The combinatorics of Coxeter categories. Trans. Amer. Math. Soc., 360, 4211–4233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fiebig P.: An upper bound on the exceptional characteristics for Lusztig’s character formula. J. Reine Angew. Math., 673, 1–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiebig, P. & Williamson, G., Parity sheaves, moment graphs and the p-smooth locus of Schubert varieties. Ann. Inst. Fourier (Grenoble), 64 (2014), 489–536.

  17. Gabber O., Joseph A.: Towards the Kazhdan–Lusztig conjecture. Ann. Sci. École Norm. Sup., 14, 261–302 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, X. & Williamson, G., Soergel calculus and Schubert calculus. To appear in Bull. Inst. Math. Acad. Sinica.

  19. Jantzen, J. C., Moduln mit einem höchsten Gewicht. Lecture Notes in Mathematics, 750. Springer, Berlin–Heidelberg, 1979.

  20. Juteau D., Williamson G.: Kumar’s criterion modulo p. Duke Math. J., 163, 2617–2638 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kostant B., Kumar S.: The nil Hecke ring and cohomology of G/P for a Kac–Moody group G. Adv. in Math., 62, 187–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kübel J.: From Jantzen to Andersen filtration via tilting equivalence. Math. Scand., 110, 161–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kübel J.: Tilting modules in category \({\mathcal{O}}\) and sheaves on moment graphs. J. Algebra, 371, 559–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar S.: The nil Hecke ring and singularity of Schubert varieties. Invent. Math., 123, 471–506 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soergel, W., Kategorie \({\mathcal{O}}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc., 3 (1990), 421–445.

  26. Soergel W.: Character formulas for tilting modules over Kac–Moody algebras. Represent. Theory, 2, 432–448 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soergel, W., Langlands’ philosophy and Koszul duality, in Algebra—Representation Theory (Constanta, 2000), NATO Sci. Ser. II Math. Phys. Chem., 28, pp. 379–414. Kluwer, Dordrecht, 2001.

  28. Soergel W.: Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen. J. Inst. Math. Jussieu, 6, 501–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soergel W.: Andersen filtration and hard Lefschetz. Geom. Funct. Anal., 17, 2066–2089 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geordie Williamson.

Additional information

Dedicated to Ben and Yeppie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, G. Local Hodge theory of Soergel bimodules. Acta Math 217, 341–404 (2016). https://doi.org/10.1007/s11511-017-0146-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-017-0146-8

Navigation