Abstract
We give lower bounds for the numbers of real solutions in problems appearing in Schubert calculus in the Grassmannian \({\mathop{\rm Gr}(n,d)}\) related to osculating flags. It is known that such solutions are related to Bethe vectors in the Gaudin model associated to \({\mathop{\rm gl}_n}\). The Gaudin Hamiltonians are self-adjoint with respect to a non-degenerate indefinite Hermitian form. Our bound comes from the computation of the signature of that form.
Similar content being viewed by others
References
Eremenko A., Gabrielov A.: The Wronski map and Grassmannians of real codimension 2 subspaces. Comput. Methods Funct. Theory, 1, 1–25 (2001)
Eremenko A., Gabrielov A.: Degrees of real Wronski maps. Discrete Comput. Geom., 28, 331–347 (2002)
Eremenko A., Gabrielov A.: Pole placement static output feedback for generic linear systems. SIAM J. Control Optim., 41, 303–312 (2002)
Eremenko A., Gabrielov A.: Rational functions with real critical points and the B. and M Shapiro conjecture in real enumerative geometry. Ann. of Math., 155, 105–129 (2002)
Frobenius, F., Über die Charaktere der symmetrischen Gruppe. Sitzungberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1900), 516–534; reprinted in Gessamelte Abhandlungen, III, pp. 148–166, Springer Collected Works in Mathematics. Springer, Berlin–Heidelberg, 1968.
Fulton, W., Young Tableaux. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
Hein N., Hillar C. J., Sottile F.: Lower bounds in real Schubert calculus. São Paulo J. Math. Sci., 7, 33–58 (2013)
Hein, N. & Sottile, F., Beyond the Shapiro conjecture and Eremenko–Gabrielov lower bounds. Online database. Available at http://www.math.tamu.edu/~secant/lowerBounds/lowerBounds.php.
Hein N., Sottile F., Zelenko I.: A congruence modulo four in real Schubert calculus. J. Reine Angew. Math., 714, 151–174 (2016)
Mukhin, E., Tarasov, V. & Varchenko, A., Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. Theory Exp., 8 (2006), P08002, 44 pp.
Mukhin, E., Tarasov, V. & Varchenko, A., Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel. SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 060, 31 pp.
Mukhin E., Tarasov V., Varchenko A.: The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz. Ann. of Math., 170, 863–881 (2009)
Mukhin E., Tarasov V., Varchenko A.: Schubert calculus and representations of the general linear group. J. Amer. Math. Soc., 22, 909–940 (2009)
Pontryagin, L., Hermitian operators in spaces with indefinite metric. Izv. Akad. Nauk SSSR Ser. Math., 8 (1944), 243–280 (Russian).
Soprunova E., Sottile F.: Lower bounds for real solutions to sparse polynomial systems. Adv. Math., 204, 116–151 (2006)
Sottile F.: Frontier of reality in Schubert calculus. Bull. Amer. Math. Soc., 47, 31–71 (2010)
Talalaev, D., Quantization of the Gaudin system. Preprint, 2004. arXiv:hep-th/0404153
White D.E.: Sign-balanced posets. J. Combin. Theory Ser. A, 95, 1–38 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mukhin, E., Tarasov, V. Lower bounds for numbers of real solutions in problems of Schubert calculus. Acta Math 217, 177–193 (2016). https://doi.org/10.1007/s11511-016-0143-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11511-016-0143-3