Skip to main content
Log in

Lower bounds for numbers of real solutions in problems of Schubert calculus

  • Published:
Acta Mathematica

Abstract

We give lower bounds for the numbers of real solutions in problems appearing in Schubert calculus in the Grassmannian \({\mathop{\rm Gr}(n,d)}\) related to osculating flags. It is known that such solutions are related to Bethe vectors in the Gaudin model associated to \({\mathop{\rm gl}_n}\). The Gaudin Hamiltonians are self-adjoint with respect to a non-degenerate indefinite Hermitian form. Our bound comes from the computation of the signature of that form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eremenko A., Gabrielov A.: The Wronski map and Grassmannians of real codimension 2 subspaces. Comput. Methods Funct. Theory, 1, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eremenko A., Gabrielov A.: Degrees of real Wronski maps. Discrete Comput. Geom., 28, 331–347 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eremenko A., Gabrielov A.: Pole placement static output feedback for generic linear systems. SIAM J. Control Optim., 41, 303–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eremenko A., Gabrielov A.: Rational functions with real critical points and the B. and M Shapiro conjecture in real enumerative geometry. Ann. of Math., 155, 105–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frobenius, F., Über die Charaktere der symmetrischen Gruppe. Sitzungberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1900), 516–534; reprinted in Gessamelte Abhandlungen, III, pp. 148–166, Springer Collected Works in Mathematics. Springer, Berlin–Heidelberg, 1968.

  6. Fulton, W., Young Tableaux. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.

  7. Hein N., Hillar C. J., Sottile F.: Lower bounds in real Schubert calculus. São Paulo J. Math. Sci., 7, 33–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hein, N. & Sottile, F., Beyond the Shapiro conjecture and Eremenko–Gabrielov lower bounds. Online database. Available at http://www.math.tamu.edu/~secant/lowerBounds/lowerBounds.php.

  9. Hein N., Sottile F., Zelenko I.: A congruence modulo four in real Schubert calculus. J. Reine Angew. Math., 714, 151–174 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Mukhin, E., Tarasov, V. & Varchenko, A., Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. Theory Exp., 8 (2006), P08002, 44 pp.

  11. Mukhin, E., Tarasov, V. & Varchenko, A., Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel. SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 060, 31 pp.

  12. Mukhin E., Tarasov V., Varchenko A.: The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz. Ann. of Math., 170, 863–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mukhin E., Tarasov V., Varchenko A.: Schubert calculus and representations of the general linear group. J. Amer. Math. Soc., 22, 909–940 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pontryagin, L., Hermitian operators in spaces with indefinite metric. Izv. Akad. Nauk SSSR Ser. Math., 8 (1944), 243–280 (Russian).

  15. Soprunova E., Sottile F.: Lower bounds for real solutions to sparse polynomial systems. Adv. Math., 204, 116–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sottile F.: Frontier of reality in Schubert calculus. Bull. Amer. Math. Soc., 47, 31–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Talalaev, D., Quantization of the Gaudin system. Preprint, 2004. arXiv:hep-th/0404153

  18. White D.E.: Sign-balanced posets. J. Combin. Theory Ser. A, 95, 1–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Mukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, E., Tarasov, V. Lower bounds for numbers of real solutions in problems of Schubert calculus. Acta Math 217, 177–193 (2016). https://doi.org/10.1007/s11511-016-0143-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0143-3

Navigation