Abstract
We construct approximate transport maps for perturbative several-matrix models. As a consequence, we deduce that local statistics have the same asymptotic as in the case of independent GUE or GOE matrices (i.e., they are given by the sine-kernel in the bulk and the Tracy–Widom distribution at the edge), and we show averaged energy universality (i.e., universality for averages of m-points correlation functions around some energy level E in the bulk). As a corollary, these results yield universality for self-adjoint polynomials in several independent GUE or GOE matrices which are close to the identity.
Similar content being viewed by others
References
Akemann G., Ipsen J. R.: Recent exact and asymptotic results for products of independent random matrices. Acta Phys. Polon. B 46, 1747–1784 (2015)
Anderson, G. W., Guionnet, A. & Zeitouni, O., An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge Univ. Press, Cambridge, 2010.
Aptekarev A. I., Bleher P. M., Kuijlaars A. B. J.: Large n limit of Gaussian random matrices with external source. II. Comm. Math. Phys. 259, 367–389 (2005)
Bekerman, F., Transport maps for \({\beta}\)-matrix models in the multi-cut regime. Preprint, 2015. arXiv:1512.00302 [math.PR].
Bekerman F., Figalli A., Guionnet A.: Transport maps for \({\beta}\)-matrix models and universality. Comm. Math. Phys. 338, 589–619 (2015)
Ben Arous G., Bourgade P.: Extreme gaps between eigenvalues of random matrices. Ann. Probab. 41, 2648–2681 (2013)
Ben Arous G., Guionnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Related Fields 108, 517–542 (1997)
Bertola, M., Two-matrix models and biorthogonal polynomials, in The Oxford Handbook of Random Matrix Theory, pp. 310–328. Oxford Univ. Press, Oxford, 2011.
Borot G., Guionnet A.: Asymptotic expansion of \({\beta}\) matrix models in the one-cut regime. Comm. Math. Phys. 317, 447–483 (2013)
Borot, G. & Guionnet, A., Asymptotic expansion of beta matrix models in the multi-cut regime. Preprint, 2013. arXiv:1303.1045 [math.PR].
Borot G., Guionnet A., Kozlowski K. K.: Large-N asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Not. IMRN 2015, 10451–10524 (2015)
Bourgade, P., Erdős, L. & Yau, H.-T., Bulk universality of general \({\beta}\)-ensembles with non-convex potential. J. Math. Phys., 53 (2012), 095221, 19 pp.
Bourgade P., Erdős L., Yau H.-T.: Edge universality of beta ensembles. Comm. Math. Phys. 332, 261–353 (2014)
Bourgade P., Erdős L., Yau H.-T.: Universality of general \({\beta}\)-ensembles. Duke Math. J. 163, 1127–1190 (2014)
Bourgade P., Erdős L., Yau H.-T., Yin J.: Fixed energy universality for generalized Wigner matrices. Comm. Pure Appl. Math. 69, 1815–1881 (2016)
Brézin E., Itzykson C., Parisi G., Zuber J. B.: Planar diagrams. Comm. Math. Phys. 59, 35–51 (1978)
Capitaine M., Péché S.: Fluctuations at the edges of the spectrum of the full rank deformed GUE. Probab. Theory Related Fields 165, 117–161 (2016)
Collins B., Guionnet A., Maurel-Segala É.: Asymptotics of unitary and orthogonal matrix integrals. Adv. Math. 222, 172–215 (2009)
Deift, P. A., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, 3. Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999.
Deift P. A., Gioev D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Comm. Pure Appl. Math. 60, 867–910 (2007)
Deift, P. A. & Gioev, D., Universality in random matrix theory for orthogonal and symplectic ensembles. Int. Math. Res. Pap. IMRP, 2 (2007), Art. ID rpm004, 116 pp.
Deift, P. A. & Gioev, D., Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, 18. Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2009.
Erdős, L., Universality of Wigner random matrices, in XVI International Congress on Mathematical Physics, pp. 86–105. World Sci., Hackensack, NJ, 2010.
Erdős L., Knowles A., Yau H.-T., Yin J.: Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323, 367–416 (2013)
Erdős L., Péché S., Ramírez J. A., Schlein B., Yau H.-T.: Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63, 895–925 (2010)
Erdős L., Schlein B., Yau H.-T., Yin J.: The local relaxation flow approach to universality of the local statistics for random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48, 1–46 (2012)
Erdős L., Yau H.-T.: Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. 49, 377–414 (2012)
Erdős L., Yau H.-T.: Gap universality of generalized Wigner and \({\beta}\)-ensembles. J. Eur. Math. Soc. (JEMS) 17, 1927–2036 (2015)
Erdős L., Yau H.-T., Yin J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229, 1435–1515 (2012)
Eynard B., Bonnet G.: The Potts-q random matrix model: loop equations, critical exponents, and rational case. Phys. Lett. B 463, 273–279 (1999)
Forrester, P. J., Log-Gases and Random Matrices. London Mathematical Society Monographs Series, 34. Princeton Univ. Press, Princeton, NJ, 2010.
Götze F., Venker M.: Local universality of repulsive particle systems and random matrices. Ann. Probab. 42, 2207–2242 (2014)
Guionnet, A., Jones, V. F. R. & Shlyakhtenko, D., Random matrices, free probability, planar algebras and subfactors, in Quanta of Maths, Clay Math. Proc., 11, pp. 201–239. Amer. Math. Soc., Providence, RI, 2010.
Guionnet A., Jones V. F. R., Shlyakhtenko D., Zinn-Justin P.: Loop models, random matrices and planar algebras. Comm. Math. Phys. 316, 45–97 (2012)
Guionnet A., Maurel-Segala É.: Combinatorial aspects of matrix models. ALEA Lat. Am. J. Probab. Math. Stat. 1, 241–279 (2006)
Guionnet A., Maurel-Segala É.: Second order asymptotics for matrix models. Ann. Probab. 35, 2160–2212 (2007)
Guionnet A., Novak J.: Asymptotics of unitary multimatrix models: the Schwinger–Dyson lattice and topological recursion. J. Funct. Anal. 268, 851–2905 (2015)
Guionnet A., Shlyakhtenko D.: Free monotone transport. Invent. Math. 197, 613–661 (2014)
Haagerup U., Thorbjørnsen S.: A new application of random matrices: \({{\rm Ext}(C^*_{\rm red}(F_2))}\) is not a group. Ann. of Math. 162, 711–775 (2005)
Kostov, I., Two-dimensional quantum gravity, in The Oxford Handbook of Random Matrix Theory, pp. 619–640. Oxford Univ. Press, Oxford, 2011.
Kriecherbauer, T. & Shcherbina, M., Fluctuations of eigenvalues of matrix models and their applications. Preprint, 2010. arXiv:1003.6121 [math-ph].
Kriecherbauer, T. & Venker, M., Edge statistics for a class of repulsive particle systems. Preprint, 2015. arXiv:1501.07501 [math.PR].
Krishnapur M., Rider B., Virág B.: Universality of the stochastic Airy operator. Comm. Pure Appl. Math. 69, 145–199 (2016)
Lee J. O., Schnelli K., Stetler B., Yau H.-T.: Bulk universality for deformed Wigner matrices. Ann. Probab. 44, 2349–2425 (2016)
Levin E., Lubinsky D. S.: Universality limits in the bulk for varying measures. Adv. Math. 219, 743–779 (2008)
Liu D. Z., Wang Y.: Universality for Products of Random Matrices I: Ginibre and Truncated Unitary Cases. Int. Math. Res. Not. IMRN 2016, 3473–3524 (2016)
Lubinsky, D. S., Universality limits via “old style” analysis, in Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, Math. Sci. Res. Inst. Publ., 65, pp. 277–292. Cambridge Univ. Press, New York, 2014.
Maïda M., Maurel-Segala É.: Free transport-entropy inequalities for non-convex potentials and application to concentration for random matrices. Probab. Theory Related Fields 159, 329–356 (2014)
Male C.: The norm of polynomials in large random and deterministic matrices. Probab. Theory Related Fields 154, 477–532 (2012)
Maurel-Segala, É., High order expansion of matrix models and enumeration of maps. Preprint, 2006. arXiv:math/0608192 [math.PR].
Mehta M. L.: A method of integration over matrix variables. Comm. Math. Phys. 79, 327–340 (1981)
Mehta, M. L., Random Matrices. Pure and Applied Mathematics, 142. Elsevier/Academic Press, Amsterdam, 2004.
Nelson B.: Free transport for finite depth subfactor planar algebras. J. Funct. Anal. 268, 2586–2620 (2015)
Ramírez J. A., Rider B., Virág B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24, 919–944 (2011)
Shcherbina M.: On universality for orthogonal ensembles of random matrices. Comm. Math. Phys. 285, 957–974 (2009)
Shcherbina, M., Change of variables as a method to study general \({\beta}\)-models: bulk universality. J. Math. Phys., 55 (2014), 043504, 23 pp.
Shcherbina T.: Universality of the local regime for the block band matrices with a finite number of blocks. J. Stat. Phys. 155, 466–499 (2014)
Tao T.: The asymptotic distribution of a single eigenvalue gap of a Wigner matrix. Probab. Theory Related Fields 157, 81–106 (2013)
Tao T., Vu V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38, 2023–2065 (2010)
Tao T., Vu V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127–204 (2011)
Tao T., Vu V.: Random covariance matrices: universality of local statistics of eigenvalues. Ann. Probab. 40, 1285–1315 (2012)
Tao T., Vu V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43, 782–874 (2015)
Tracy C. A., Widom H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1994)
Tracy C. A., Widom H.: Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161, 289–309 (1994)
Valkó B., Virág B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177, 463–508 (2009)
Venker M.: Particle systems with repulsion exponent \({\beta}\) and random matrices. Electron. Commun. Probab. 18(83), 12 (2013)
Voiculescu D.: Limit laws for random matrices and free products. Invent. Math. 104, 201–220 (1991)
Wigner E. P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. 62, 548–564 (1955)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Figalli, A., Guionnet, A. Universality in several-matrix models via approximate transport maps. Acta Math 217, 81–176 (2016). https://doi.org/10.1007/s11511-016-0142-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11511-016-0142-4