Skip to main content
Log in

Regularity of Kähler–Ricci flows on Fano manifolds

  • Published:
Acta Mathematica

Abstract

In this paper, we will establish a regularity theory for the Kähler–Ricci flow on Fano n-manifolds with Ricci curvature bounded in L p-norm for some \({p > n}\). Using this regularity theory, we will also solve a long-standing conjecture for dimension 3. As an application, we give a new proof of the Yau–Tian–Donaldson conjecture for Fano 3-manifolds. The results have been announced in [45].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ache, A. G., On the uniqueness of asymptotic limits of the Ricci flow. Preprint, 2012. arXiv:1211.3387 [math.DG].

  2. Anderson M. T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R. J., Boucksom, S., Essydieux, P., Guedj, V. & Zeriahi, A., Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. Preprint, 2011. arXiv:1111.7158 [math.CV].

  4. Berndtsson B.: A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200, 149–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besse, A. L., Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 10. Springer, Berlin–Heidelberg, 1987.

  6. Cao H. D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheeger J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13, 20–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger J., Colding T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144, 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differential Geom. 54, 13–35 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Cheeger J., Colding T. H., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12, 873–914 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger J., Yau S. T.: A lower bound for the heat kernel. Comm. Pure Appl. Math. 34, 465–480 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \({2\pi}\) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen X., Wang B.: Space of Ricci flows I. Comm. Pure Appl. Math. 65, 1399–1457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F. & Ni, L., The Ricci Flow: Techniques and Applications. Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs, 163. Amer. Math. Soc., Providence, RI, 2010.

  17. Colding T. H., Naber A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dai X., Wei G.: A heat kernel lower bound for integral Ricci curvature. Michigan Math. J. 52, 61–69 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donaldson S., Sun S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213, 63–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Futaki, A., Kähler–Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer, Berlin–Heidelberg, 1988.

  21. Grigor’yan A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geom. 45, 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mabuchi T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Paul S. T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. 175, 255–296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Paul, S. T., A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv:1210.0924 [math.DG].

  26. Paul, S. T., Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv:1308.4377 [math.AG].

  27. Perelman, G., The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv:math/0211159 [math.DG].

  28. Petersen, P., Convergence theorems in Riemannian geometry, in Comparison Geometry (Berkeley, CA, 1993–94), Math. Sci. Res. Inst. Publ., 30, pp. 167–202. Cambridge Univ. Press, Cambridge, 1997.

  29. Petersen P., Wei G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7, 1031–1045 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Petersen P., Wei G.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. Amer. Math. Soc. 353, 457–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Phong, D. H., Song, J. & Sturm, J., Degeneration of Kähler–Ricci solitons on Fano manifolds. Preprint, 2012. arXiv:1211.5849 [math.DG].

  32. Rothaus O. S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42, 110–120 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sesum N.: Convergence of a Kähler–Ricci flow. Math. Res. Lett. 12, 623–632 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sesum N., Tian G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7, 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi W.-X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differential Geom. 30, 303–394 (1989)

    MathSciNet  MATH  Google Scholar 

  36. Tian G.: On Calabi’s conjecture for complex surfaces with positive first Ch ern class. Invent. Math. 101, 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, G., Kähler–Einstein metrics on algebraic manifolds, in Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), pp. 587–598. Math. Soc. Japan, Tokyo, 1991.

  38. Tian G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tian, G., Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000.

  40. Tian, G., Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry, Progr. Math., 297, pp. 119–159. Birkhäuser/Springer, Basel, 2012.

  41. Tian G.: Partial C 0-estimate for Kähler–Einstein metrics. Commun. Math. Stat. 1, 105–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68, 1085–1156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian G., Zhang S., Zhang Z., Zhu X.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365, 6669–6695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian G., Zhang Z.: Degeneration of Kähler–Ricci solitons. Int. Math. Res. Not. IMRN 5, 957–985 (2012)

    MATH  Google Scholar 

  45. Tian G., Zhang Z.: Regularity of the Kähler–Ricci flow. C. R. Math. Acad. Sci. Paris 351, 635–638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tian G., Zhu X.: Convergence of Kähler–Ricci flow. J. Amer. Math. Soc. 20, 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tian G.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Yang D.: Convergence of Riemannian manifolds with integral bounds on curvature. I. Ann. Sci. École Norm. Sup. 25, 77–105 (1992)

    MathSciNet  MATH  Google Scholar 

  49. Ye R.: The logarithmic Sobolev and Sobolev inequalities along the Ricci flow. Commun. Math. Stat. 3, 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Q. S., A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN, 17 (2007), Art. ID rnm056, 17 pp.

  51. Zhang Z.: Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. Math. Res. Lett. 18, 969–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlei Zhang.

Additional information

The first author was supported by NSF grants. The second author was supported by a grant of Beijing MCE 11224010007 and NSFC 13210010022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Zhang, Z. Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math 216, 127–176 (2016). https://doi.org/10.1007/s11511-016-0137-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0137-1

Navigation