Abstract
In this paper, we will establish a regularity theory for the Kähler–Ricci flow on Fano n-manifolds with Ricci curvature bounded in L p-norm for some \({p > n}\). Using this regularity theory, we will also solve a long-standing conjecture for dimension 3. As an application, we give a new proof of the Yau–Tian–Donaldson conjecture for Fano 3-manifolds. The results have been announced in [45].
Similar content being viewed by others
References
Ache, A. G., On the uniqueness of asymptotic limits of the Ricci flow. Preprint, 2012. arXiv:1211.3387 [math.DG].
Anderson M. T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)
Berman, R. J., Boucksom, S., Essydieux, P., Guedj, V. & Zeriahi, A., Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties. Preprint, 2011. arXiv:1111.7158 [math.CV].
Berndtsson B.: A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200, 149–200 (2015)
Besse, A. L., Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 10. Springer, Berlin–Heidelberg, 1987.
Cao H. D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)
Cheeger J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal. 13, 20–72 (2003)
Cheeger J., Colding T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144, 189–237 (1996)
Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 406–480 (1997)
Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differential Geom. 54, 13–35 (2000)
Cheeger J., Colding T. H., Tian G.: On the singularities of spaces with bounded Ricci curvature. Geom. Funct. Anal. 12, 873–914 (2002)
Cheeger J., Yau S. T.: A lower bound for the heat kernel. Comm. Pure Appl. Math. 34, 465–480 (1981)
Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)
Chen X., Donaldson S., Sun S.: Kähler–Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \({2\pi}\) and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)
Chen X., Wang B.: Space of Ricci flows I. Comm. Pure Appl. Math. 65, 1399–1457 (2012)
Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F. & Ni, L., The Ricci Flow: Techniques and Applications. Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs, 163. Amer. Math. Soc., Providence, RI, 2010.
Colding T. H., Naber A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)
Dai X., Wei G.: A heat kernel lower bound for integral Ricci curvature. Michigan Math. J. 52, 61–69 (2004)
Donaldson S., Sun S.: Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213, 63–106 (2014)
Futaki, A., Kähler–Einstein Metrics and Integral Invariants. Lecture Notes in Math., 1314. Springer, Berlin–Heidelberg, 1988.
Grigor’yan A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geom. 45, 33–52 (1997)
Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)
Mabuchi T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593 (1986)
Paul S. T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. of Math. 175, 255–296 (2012)
Paul, S. T., A numerical criterion for K-energy maps of algebraic manifolds. Preprint, 2012. arXiv:1210.0924 [math.DG].
Paul, S. T., Stable pairs and coercive estimates for the Mabuchi functional. Preprint, 2013. arXiv:1308.4377 [math.AG].
Perelman, G., The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv:math/0211159 [math.DG].
Petersen, P., Convergence theorems in Riemannian geometry, in Comparison Geometry (Berkeley, CA, 1993–94), Math. Sci. Res. Inst. Publ., 30, pp. 167–202. Cambridge Univ. Press, Cambridge, 1997.
Petersen P., Wei G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7, 1031–1045 (1997)
Petersen P., Wei G.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. Amer. Math. Soc. 353, 457–478 (2001)
Phong, D. H., Song, J. & Sturm, J., Degeneration of Kähler–Ricci solitons on Fano manifolds. Preprint, 2012. arXiv:1211.5849 [math.DG].
Rothaus O. S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42, 110–120 (1981)
Sesum N.: Convergence of a Kähler–Ricci flow. Math. Res. Lett. 12, 623–632 (2005)
Sesum N., Tian G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7, 575–587 (2008)
Shi W.-X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differential Geom. 30, 303–394 (1989)
Tian G.: On Calabi’s conjecture for complex surfaces with positive first Ch ern class. Invent. Math. 101, 101–172 (1990)
Tian, G., Kähler–Einstein metrics on algebraic manifolds, in Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), pp. 587–598. Math. Soc. Japan, Tokyo, 1991.
Tian G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)
Tian, G., Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2000.
Tian, G., Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry, Progr. Math., 297, pp. 119–159. Birkhäuser/Springer, Basel, 2012.
Tian G.: Partial C 0-estimate for Kähler–Einstein metrics. Commun. Math. Stat. 1, 105–113 (2013)
Tian G.: K-stability and Kähler–Einstein metrics. Comm. Pure Appl. Math. 68, 1085–1156 (2015)
Tian G., Zhang S., Zhang Z., Zhu X.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365, 6669–6695 (2013)
Tian G., Zhang Z.: Degeneration of Kähler–Ricci solitons. Int. Math. Res. Not. IMRN 5, 957–985 (2012)
Tian G., Zhang Z.: Regularity of the Kähler–Ricci flow. C. R. Math. Acad. Sci. Paris 351, 635–638 (2013)
Tian G., Zhu X.: Convergence of Kähler–Ricci flow. J. Amer. Math. Soc. 20, 675–699 (2007)
Tian G.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)
Yang D.: Convergence of Riemannian manifolds with integral bounds on curvature. I. Ann. Sci. École Norm. Sup. 25, 77–105 (1992)
Ye R.: The logarithmic Sobolev and Sobolev inequalities along the Ricci flow. Commun. Math. Stat. 3, 1–36 (2015)
Zhang, Q. S., A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN, 17 (2007), Art. ID rnm056, 17 pp.
Zhang Z.: Kähler Ricci flow on Fano manifolds with vanished Futaki invariants. Math. Res. Lett. 18, 969–982 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author was supported by NSF grants. The second author was supported by a grant of Beijing MCE 11224010007 and NSFC 13210010022.
Rights and permissions
About this article
Cite this article
Tian, G., Zhang, Z. Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math 216, 127–176 (2016). https://doi.org/10.1007/s11511-016-0137-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11511-016-0137-1