Acta Mathematica

, Volume 215, Issue 1, pp 55–126 | Cite as

Skinning maps are finite-to-one

  • David Dumas


We show that Thurston’s skinning maps of Teichmüller space have finite fibers. The proof centers around a study of two subvarieties of the \({{\rm SL}_2(\mathbb{C})}\) character variety of a surface—one associated with complex projective structures, and the other associated with a 3-manifold. Using the Morgan–Shalen compactification of the character variety and author’s results on holonomy limits of complex projective structures, we show that these subvarieties have only a discrete set of intersections.

Along the way, we introduce a natural stratified Kähler metric on the space of holomorphic quadratic differentials on a Riemann surface and show that it is symplectomorphic to the space of measured foliations. Mirzakhani has used this symplectomorphism to show that the Hubbard–Masur function is constant; we include a proof of this result. We also generalize Floyd’s theorem on the space of boundary curves of incompressible, boundary-incompressible surfaces to a statement about extending group actions on \({\Lambda}\) -trees.


Length Function Isometric Embedding Compacti Cation Saddle Connection Measured Foliation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.
    Alexander H.: Continuing 1-dimensional analytic sets. Math. Ann., 191, 143–144 (1971)MATHMathSciNetCrossRefGoogle Scholar
  2. AB.
    Alperin, R. & Bass, H., Length functions of group actions on \({\Lambda}\)-trees, in Combinatorial Group Theory and Topology (Alta, UT, 1984), Ann. of Math. Stud., 111, pp. 265–378. Princeton Univ. Press, Princeton, NJ, 1987.Google Scholar
  3. ABEM.
    Athreya J., Bufetov A., Eskin A., Mirzakhani M.: Lattice point asymptotics and volume growth on Teichmüller space. Duke Math. J., 161, 1055–1111 (2012)MATHMathSciNetCrossRefGoogle Scholar
  4. Be1.
    Bers L.: On boundaries of Teichmüller spaces and on Kleinian groups. I. Ann. of Math., 91, 570–600 (1970)MATHMathSciNetCrossRefGoogle Scholar
  5. Be2.
    Bers, L., Spaces of Kleinian groups, in Several Complex Variables, I (College Park, MD, 1970), pp. 9–34. Springer, Berlin–Heidelberg, 1970.Google Scholar
  6. Bon.
    Bonahon F.: Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse Math., 5, 233–297 (1996)MATHMathSciNetCrossRefGoogle Scholar
  7. Bow.
    Bowditch B. H.: Group actions on trees and dendrons.. Topology, 37, 1275–1298 (1998)MATHMathSciNetCrossRefGoogle Scholar
  8. BH.
    Bridson, M. R. & Haefliger, A., Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin–Heidelberg, 1999.Google Scholar
  9. Br.
    Brown K. S.: Trees, valuations, and the Bieri–Neumann–Strebel invariant. Invent. Math., 90, 479–504 (1987)MATHMathSciNetCrossRefGoogle Scholar
  10. Ch1.
    Chirka, E. M., Regularity of the boundaries of analytic sets. Mat. Sb., 117(159) (1982), 291–336, 431 (Russian); English translation in Math. USSR–Sb., 45 (1983), 291–335.Google Scholar
  11. Ch2.
    Chirka, E. M., Complex Analytic Sets. Mathematics and its Applications (Soviet Series), 46. Kluwer, Dordrecht, 1989.Google Scholar
  12. Chis.
    Chiswell, I., Introduction to \({\Lambda}\) -Trees. World Scientific, River Edge, NJ, 2001.Google Scholar
  13. Cu.
    Culler M.: Lifting representations to covering groups. Adv. Math., 59, 64–70 (1986)MATHMathSciNetCrossRefGoogle Scholar
  14. CM.
    Culler M., Morgan J. W.: Group actions on R-trees. Proc. London Math. Soc., 55, 571–604 (1987)MATHMathSciNetCrossRefGoogle Scholar
  15. CS.
    Culler M., Shalen P. B.: Varieties of group representations and splittings of 3-manifolds. Ann. of Math., 117, 109–146 (1983)MATHMathSciNetCrossRefGoogle Scholar
  16. DH.
    Douady A., Hubbard J.: On the density of Strebel differentials. Invent. Math., 30, 175–179 (1975)MATHMathSciNetCrossRefGoogle Scholar
  17. D.
    Dumas, D., Holonomy limits of complex projective structures. Preprint, 2011. arXiv:1105.5102 [math.DG].
  18. DK1.
    Dumas D., Kent R. P.: IV, Bers slices are Zariski dense. J. Topol., 2, 373–379 (2009)MATHMathSciNetCrossRefGoogle Scholar
  19. DK2.
    Dumas D., Kent R. P.: Slicing, skinning, and grafting. Amer. J. Math., 131, 1419–1429 (2009)MATHMathSciNetCrossRefGoogle Scholar
  20. DK3.
    Dumas, D. & Kent, R. P., Experiments with skinning maps. In preparation.Google Scholar
  21. FLP.
    Fathi, A., Laudenbach, F. & Poénaru, V. (Eds.), Travaux de Thurston sur les surfaces. Astérisque, 66. Soc. Math. de France, Paris, 1979.Google Scholar
  22. F.
    Floyd, W. J., Incompressible surfaces in 3-manifolds: the space of boundary curves, in Low-Dimensional Topology and Kleinian Groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 112, pp. 131–143. Cambridge Univ. Press, Cambridge, 1986.Google Scholar
  23. FO.
    Floyd W. J., Oertel U.: Incompressible surfaces via branched surfaces. Topology, 23, 117–125 (1984)MATHMathSciNetCrossRefGoogle Scholar
  24. GKM.
    Gallo D., Kapovich M., Marden A.: The monodromy groups of Schwarzian equations on closed Riemann surfaces. Ann. of Math., 151, 625–704 (2000)MATHMathSciNetCrossRefGoogle Scholar
  25. Gar.
    Gardiner F. P.: Measured foliations and the minimal norm property for quadratic differentials. Acta Math., 152, 57–76 (1984)MATHMathSciNetCrossRefGoogle Scholar
  26. Gas.
    Gaster, J., A family of non-injective skinning maps with critical points. To appear in Trans. Amer. Math. Soc.Google Scholar
  27. GM.
    Goresky, M. & MacPherson, R., Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 14. Springer, Berlin–Heidelberg, 1988.Google Scholar
  28. Gr.
    Gravett K. A. H.: Ordered abelian groups. Q. J. Math., 7, 57–63 (1956)MATHMathSciNetCrossRefGoogle Scholar
  29. Har.
    Hardt R. M.: Stratification of real analytic mappings and images. Invent. Math., 28, 193–208 (1975)MATHMathSciNetCrossRefGoogle Scholar
  30. Hat.
    Hatcher A. E.: On the boundary curves of incompressible surfaces. Pacific J. Math., 99, 373–377 (1982)MATHMathSciNetCrossRefGoogle Scholar
  31. HP.
    Heusener M., Porti J.: The variety of characters in \({{\rm PSL_2} (\mathbb{C})}\). Bol. Soc. Mat. Mex., 10, 221–237 (2004)MATHMathSciNetGoogle Scholar
  32. Hi.
    Hironaka, H., Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, pp. 453–493. Kinokuniya, Tokyo, 1973.Google Scholar
  33. HM.
    Hubbard J., Masur H.: Quadratic differentials and foliations. Acta Math., 142, 221–274 (1979)MATHMathSciNetCrossRefGoogle Scholar
  34. Kap.
    Kapovich, M., Hyperbolic Manifolds and Discrete Groups. Progress in Mathematics, 183. Birkhäuser, Boston, MA, 2001.Google Scholar
  35. Kaw.
    Kawai S.: The symplectic nature of the space of projective connections on Riemann surfaces. Math. Ann., 305, 161–182 (1996)MathSciNetCrossRefGoogle Scholar
  36. Ke.
    Kent R. P.: IV, Skinning maps. Duke Math. J., 151, 279–336 (2010)MATHMathSciNetCrossRefGoogle Scholar
  37. KW.
    Kleinbock, D. & Weiss, B., Bounded geodesics in moduli space. Int. Math. Res. Not., 2004 (2004), 1551–1560.Google Scholar
  38. KK.
    Kokorin, A. I. & Kopytov, V. M., Fully Ordered Groups. Halsted, New York–Toronto, 1974.Google Scholar
  39. Kr.
    Kra, I., Deformation spaces, in A Crash Course on Kleinian Groups (San Francisco, CA, 1974), Lecture Notes in Math., 400, pp. 48–70. Springer, Berlin–Heidelberg, 1974.Google Scholar
  40. KS.
    Krasnov K., Schlenker J.-M.: A symplectic map between hyperbolic and complex Teichmüller theory. Duke Math. J., 150, 331–356 (2009)MATHMathSciNetCrossRefGoogle Scholar
  41. La.
    Labourie, F., Lectures on Representations of Surface Groups. Zürich Lectures in Advanced Mathematics. Eur. Math. Soc., Zürich, 2013.Google Scholar
  42. Le1.
    Levitt G.: Foliations and laminations on hyperbolic surfaces. Topology, 22, 119–135 (1983)MATHMathSciNetCrossRefGoogle Scholar
  43. Le2.
    Levitt G.: \({\mathbb{R}}\)-trees and the Bieri–Neumann–Strebel invariant. Publ. Mat., 38, 195–202 (1994)MATHMathSciNetCrossRefGoogle Scholar
  44. MaS.
    Masur H., Smillie J.: Hausdorff dimension of sets of nonergodic measured foliations. Ann. of Math., 134, 455–543 (1991)MATHMathSciNetCrossRefGoogle Scholar
  45. M1.
    McMullen C.: Amenability, Poincaré series and quasiconformal maps. Invent. Math., 97, 95–127 (1989)MATHMathSciNetCrossRefGoogle Scholar
  46. M2.
    McMullen C.: Iteration on Teichmüller space. Invent. Math., 99, 425–454 (1990)MATHMathSciNetCrossRefGoogle Scholar
  47. Mor1.
    Morgan, J. W., Group actions on trees and the compactification of the space of classes of SO(n, 1)-representations. Topology, 25 (1986), 1–33.Google Scholar
  48. Mor2.
    Morgan J. W.: \({\Lambda}\)-trees and their applications. Bull. Amer. Math. Soc., 26, 87–112 (1992)MATHMathSciNetCrossRefGoogle Scholar
  49. MoS1.
    Morgan J. W., Shalen P. B.: Valuations, trees, and degenerations of hyperbolic structures. I. Ann. of Math., 120, 401–476 (1984)MATHMathSciNetCrossRefGoogle Scholar
  50. MoS2.
    Morgan, J. W. & Shalen, P. B., An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and Topology (College Park, MD, 1983/84), Lecture Notes in Math., 1167, pp. 228–240. Springer, Berlin–Heidelberg, 1985.Google Scholar
  51. MoS3.
    Morgan J. W., Shalen P. B.: Degenerations of hyperbolic structures. III. Actions of 3-manifold groups on trees and Thurston’s compactness theorem. Ann. of Math., 127, 457–519 (1988)MATHMathSciNetCrossRefGoogle Scholar
  52. MoS4.
    Morgan J. W., Shalen P. B.: Free actions of surface groups on R-trees.. Topology, 30, 143–154 (1991)MATHMathSciNetCrossRefGoogle Scholar
  53. Mos.
    Mosher, L., Train track expansions of measured foliations. Preprint, 2003.
  54. Oh.
    Ohshika K.: Limits of geometrically tame Kleinian groups. Invent. Math., 99, 185–203 (1990)MATHMathSciNetCrossRefGoogle Scholar
  55. Ot.
    Otal, J.-P., Thurston’s hyperbolization of Haken manifolds, in Surveys in Differential Geometry, Vol. III (Cambridge, MA, 1996), pp. 77–194. International Press, Boston, MA, 1998.Google Scholar
  56. P.
    Papadopoulos A.: Réseaux ferroviaires et courbes simples sur les surfaces. C. R. Acad. Sci. Paris Sér. I Math., 297, 565–568 (1983)MATHGoogle Scholar
  57. PP.
    Papadopoulos A., Penner R. C.: The Weil–Petersson symplectic structure at Thurston’s boundary. Trans. Amer. Math. Soc., 335, 891–904 (1993)MATHMathSciNetGoogle Scholar
  58. PH.
    Penner, R. C. & Harer, J. L., Combinatorics of Train Tracks. Annals of Mathematics Studies, 125. Princeton Univ. Press, Princeton, NJ, 1992.Google Scholar
  59. R.
    Royden, H. L., Automorphisms and isometries of Teichmüller space, in Advances in the Theory of Riemann Surfaces (Stony Brook, NY, 1969), Ann. of Math. Studies, 66, pp. 369–383. Princeton Univ. Press, Princeton, NJ, 1971.Google Scholar
  60. S.
    Sullivan, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann Surfaces and Related Topics (Stony Brook, NY, 1978), Ann. of Math. Stud., 97, pp. 465–496. Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
  61. V1.
    Veech W. A.: The Teichmüller geodesic flow. Ann. of Math., 124, 441–530 (1986)MATHMathSciNetCrossRefGoogle Scholar
  62. V2.
    Veech W. A.: Moduli spaces of quadratic differentials. J. Anal. Math., 55, 117–171 (1990)MATHMathSciNetCrossRefGoogle Scholar
  63. W.
    Whitney H.: Tangents to an analytic variety. Ann. of Math., 81, 496–549 (1965)MATHMathSciNetCrossRefGoogle Scholar
  64. Y.
    Yue C. B.: Conditional measure and flip invariance of Bowen–Margulis and harmonic measures on manifolds of negative curvature. Ergodic Theory Dynam. Systems, 15, 807–811 (1995)MATHMathSciNetCrossRefGoogle Scholar
  65. ZS.
    Zariski, O., & Samuel, P., Commutative Algebra. Vol. II. Graduate Texts in Mathematics, 29. Springer, New York–Heidelberg, 1975.Google Scholar

Copyright information

© Institut Mittag-Leffler 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoU.S.A

Personalised recommendations