Skip to main content
Log in

Square-free values of f(p), f cubic

  • Published:
Acta Mathematica

Abstract

Let \({f \in \mathbb{Z}[x]}\), \({\deg f =3}\). Assume that f does not have repeated roots. Assume as well that, for every prime q, \({f(x)\not\equiv 0}\) mod q 2 has at least one solution in \({(\mathbb{Z}/q^2 \mathbb{Z})^*}\). Then, under these two necessary conditions, there are infinitely many primes p such that f(p) is square-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombieri, E., Le grand crible dans la théorie analytique des nombres. Astérisque, 18 (1987).

  2. Bombieri E., Friedlander J. B., Iwaniec H.: Primes in arithmetic progressions to large moduli. Acta Math. 156, 203–251 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breuil C., Conrad B., Diamond F., Taylor R: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14, 843–939 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browning T. D.: Power-free values of polynomials. Arch. Math.(Basel). 96, 139–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brumer A., Kramer K.: The rank of elliptic curves. Duke Math. J. 44, 715–743 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős P.: Arithmetical properties of polynomials. J. London Math. Soc. 28, 416–425 (1953)

    Article  MathSciNet  Google Scholar 

  7. Estermann T.: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105, 653–662 (1931)

    Article  MathSciNet  Google Scholar 

  8. Friedlander, J. & Iwaniec, H., Opera de cribro. American Mathematical Society Colloquium Publications, 57. Amer. Math. Soc., Providence, RI, 2010.

  9. Greaves G.: Power-free values of binary forms. Quart. J. Math. Oxford Ser. 43, 45–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath-Brown, D. R., Counting rational points on algebraic varieties, in Analytic Number Theory, Lecture Notes in Math., 1891, pp. 51–95. Springer, Berlin–Heidelberg, 2006.

  11. Helfgott H. A.: On the square-free sieve. Acta Arith. 115, 349–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helfgott H. A.: Power-free values, large deviations and integer points on irrational curves. J. Théor. Nombres Bordeaux. 19, 433–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Helfgott, H. A., Power-free values, repulsion between points, differing beliefs and the existence of error, in Anatomy of Integers, CRM Proc. Lecture Notes, 46, pp. 81–88. Amer. Math. Soc., Providence, RI, 2008.

  14. Helfgott H. A., Venkatesh A.: Integral points on elliptic curves and 3-torsion in class groups. J. Amer. Math. Soc. 19, 527–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hooley, C., Applications of Sieve Methods to the Theory of Numbers. Cambridge Tracts in Mathematics, 70. Cambridge Univ. Press, Cambridge, 1976.

  16. Iwaniec, H., Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, 17. Amer. Math. Soc., Providence, RI, 1997.

  17. Iwaniec, H. & Kowalski, E., Analytic Number Theory. American Mathematical Society Colloquium Publications, 53. Amer. Math. Soc., Providence, RI, 2004.

  18. Kabatiansky, G. A. & Levenshtein, V. I., Bounds for packings on the sphere and in space. Problemy Peredachi Informatsii, 14 (1978), 3–25 (Russian); English translation in Probl. Inf. Transm., 14 (1978), 1–17.

  19. Montgomery, H. L. & Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge Univ. Press, Cambridge, 2007.

  20. Nair M.: Power free values of polynomials. II. Proc. London Math. Soc. 38, 353–368 (1979)

    Article  MATH  Google Scholar 

  21. Salberger, P., Counting rational points on projective varieties. Preprint, 2010.

  22. Silverman J. H.: A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves. J. Reine Angew. Math. 378, 60–100 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Taylor R., Wiles A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. 141, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiles A.: Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Andrés Helfgott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helfgott, H.A. Square-free values of f(p), f cubic. Acta Math 213, 107–135 (2014). https://doi.org/10.1007/s11511-014-0117-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-014-0117-2

Navigation