Skip to main content
Log in

K-homology and index theory on contact manifolds

  • Published:
Acta Mathematica

Abstract

This paper applies K-homology to solve the index problem for a class of hypoelliptic (but not elliptic) operators on contact manifolds. K-homology is the dual theory to K-theory. We explicitly calculate the K-cycle (i.e., the element in geometric K-homology) determined by any hypoelliptic Fredholm operator in the Heisenberg calculus.

The index theorem of this paper precisely indicates how the analytic versus geometric K-homology setting provides an effective framework for extending formulas of Atiyah–Singer type to non-elliptic Fredholm operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Singer I.M.: The index of elliptic operators. I. Ann. of Math., 87, 484–530 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math., 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baum, P. & Douglas, R.G., K homology and index theory, in Operator Algebras and Applications(Kingston, Ont., 1980), Proc. Sympos. Pure Math., 38, Part I, pp. 117–173. Amer. Math. Soc., Providence, RI, 1982.

  4. Baum, P. & Douglas, R.G., index theory, bordism, and K-homology, in Operator Algebras and K-theory (San Francisco, CA, 1981), Contemp. Math., 10, pp. 1–31. Amer. Math. Soc., Providence, RI, 1982.

  5. Baum P., Higson N., Schick T.: On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q., 3, 1–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beals, R. & Greiner, P., Calculus on Heisenberg Manifolds. Annals of Mathematics Studies, 119. Princeton University Press, Princeton, NJ, 1988.

  7. Blackadar, B., K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, 5. Cambridge University Press, Cambridge, 1998.

  8. Boutet de Monvel, L., On the index of Toeplitz operators of several complex variables. Invent. Math., 50 (1978/79), 249–272.

  9. Choi M.D., Effros E.G.: The completely positive lifting problem for C*-algebras. Ann. of Math., 104, 585–609 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Connes, A., Noncommutative Geometry. Academic Press, San Diego, CA, 1994.

  11. Connes A., Moscovici H.: The local index formula in noncommutative geometry. Geom. Funct. Anal., 5, 174–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connes A., Moscovici H.: Hopf algebras, cyclic cohomology and the transverse index theorem. Comm. Math. Phys., 198, 199–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Epstein, C. L., Lectures on indices and relative indices on contact and CR-manifolds, in Woods Hole Mathematics, Ser. Knots Everything, 34, pp. 27–93. World Scientific, Hackensack, NJ, 2004.

  14. Epstein, C. L. & Melrose, R., The Heisenberg algebra, index theory and homology. Preprint, 2004.

  15. van Erp E.: The Atiyah–Singer index formula for subelliptic operators on contact manifolds. Part I. Ann. of Math., 171, 1647–1681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. van Erp, E., The Atiyah–Singer index formula for subelliptic operators on contact manifolds. Part II. Ann. of Math., 171 (2010), 1683–1706.

  17. van Erp E.: Noncommutative topology and the world’s simplest index theorem. Proc. Natl. Acad. Sci. USA, 107, 8549–8556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Erp, E., The intrinsic geometry of the osculating structures that underlie the Heisenberg calculus. Preprint, 2010. arXiv:1007.4759 [math.AP].

  19. Folland, G. B. & Stein, E. M., Estimates for the \({\bar{\partial}_b}\) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27 (1974), 429–522.

  20. Melrose, R., Homology and the Heisenberg algebra, in Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. XII. École Polytechnique, Palaiseau, 1997.

  21. Taylor, M. E., Noncommutative microlocal analysis. I. Mem. Amer. Math. Soc., 52 (1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Baum.

Additional information

With admiration and affection we dedicate this paper to Sir Michael Atiyah on the occasion of his 85th birthday.

Paul Baum thanks Dartmouth College for the generous hospitality provided to him via the Edward Shapiro fund. Erik van Erp thanks Penn State University for a number of productive and enjoyable visits. PFB was partially supported by NSF grant DMS-0701184. EvE was partially supported by NSF grant DMS-1100570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, P.F., van Erp, E. K-homology and index theory on contact manifolds. Acta Math 213, 1–48 (2014). https://doi.org/10.1007/s11511-014-0114-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-014-0114-5

Navigation