Bedford E., Taylor B. A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37, 1–44 (1976)
Article
MATH
MathSciNet
Google Scholar
Bedford E, Taylor B.A: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
Article
MATH
MathSciNet
Google Scholar
Cegrell U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier (Grenoble) 54, 159–179 (2004)
Article
MathSciNet
Google Scholar
Chel′tsov, I. A., Birationally rigid Fano varieties. Uspekhi Mat. Nauk, 60:5 (2005), 71–160 (Russian); English translation in Russian Math. Surveys, 60 (2005), 875– 965.
Corti A.: Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom. 4, 223–254 (1995)
MATH
MathSciNet
Google Scholar
Corti, A., Singularities of linear systems and 3-fold birational geometry, in Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, pp. 259–312. Cambridge Univ. Press, Cambridge, 2000.
Demailly J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math. 159, 153–169 (1987)
Article
MATH
MathSciNet
Google Scholar
Demailly J.-P.: Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1, 361–409 (1992)
MATH
MathSciNet
Google Scholar
Demailly, J.-P., Monge–Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry, Univ. Ser. Math., pp. 115–193. Plenum, New York, 1993.
Demailly, J.-P., Estimates on Monge–Ampère operators derived from a local algebra inequality, in Complex Analysis and Digital Geometry, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 86, pp. 131–143. Uppsala Universitet, Uppsala, 2009.
Demailly J.-P., Kollár J.: Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup, 34, 525–556 (2001)
MATH
Google Scholar
Eisenbud, D., Commutative Algebra. Graduate Texts in Mathematics, 150. Springer, New York, 1995.
de Fernex T., Ein L., Mustaţă M.: Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett, 10, 219–236 (2003)
Article
MATH
MathSciNet
Google Scholar
de Fernex T., Ein L., Mustaţă M.: Multiplicities and log canonical threshold. J. Algebraic Geom. 13, 603–615 (2004)
Article
MATH
MathSciNet
Google Scholar
Howald J.A.: Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc, 353, 2665–2671 (2001)
Article
MATH
MathSciNet
Google Scholar
Iskovskikh, V.A., Birational rigidity of Fano hypersurfaces in the framework of Mori theory. Uspekhi Mat. Nauk, 56:2 (2001), 3–86 (Russian); English translation in Russian Math. Surveys, 56 (2001), 207–291.
Iskovskikh, V. A. & Manin, J. I., Three-dimensional quartics and counterexamples to the L¨uroth problem. Mat. Sb., 86(128) (1971), 140–166 (Russian); English translation in Math. USSR–Sb., 15 (1971), 141–166.
Kiselman, C.O., Un nombre de Lelong raffiné, in Séminaire d’Analyse Complexe et Géométrie 1985–87, pp. 61–70. Faculté des Sciences de Tunis & Faculté des Sciences et Techniques de Monastir, Monastir, 1987.
Kiselman C.O.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math, 60, 173–197 (1994)
MATH
MathSciNet
Google Scholar
Ohsawa T., Takegoshi K.: On the extension of L
2 holomorphic functions. Math. Z, 195, 197–204 (1987)
Article
MATH
MathSciNet
Google Scholar
Pukhlikov A. V.: Birational isomorphisms of four-dimensional quintics. Invent. Math. 87, 303–329 (1987)
Article
MATH
MathSciNet
Google Scholar
Pukhlikov, A. V., Birationally rigid Fano hypersurfaces. Izυ. Ross. Akad. Nauk Ser. Mat., 66:6 (2002), 159–186 (Russian); English translation in Izυ. Math., 66 (2002), 1243–1269.
Skoda H.: Sous-ensembles analytiques d’ordre fini ou infini dans C
n. Bull. Soc. Math. France, 100, 353–408 (1972)
MATH
MathSciNet
Google Scholar