Akhiezer, D. N., Lie Group Actions in Complex Analysis. Aspects of Mathematics, E27. Vieweg, Braunschweig, 1995.
Blanc, J., Sous-groupes algébriques du groupe de Cremona. Transform. Groups, 14 (2009), 249–285.
MathSciNet
MATH
Article
Google Scholar
— Groupes de Cremona, connexité et simplicité. Ann. Sci. Éc. Norm. Supér., 43 (2010), 357–364.
MathSciNet
MATH
Google Scholar
Boucksom, S., Favre, C. & Jonsson, M., Degree growth of meromorphic surface maps. Duke Math. J., 141 (2008), 519–538.
MathSciNet
MATH
Article
Google Scholar
Bridson, M. R. & Haefliger, A., Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin–Heildeberg, 1999.
Cantat, S., Sur les groupes de transformations birationnelles des surfaces. Ann. of Math., 174 (2011), 299–340.
MathSciNet
MATH
Article
Google Scholar
Cantat, S. & Dolgachev, I., Rational surfaces with a large group of automorphisms. J. Amer. Math. Soc., 25 (2012), 863–905.
MathSciNet
MATH
Article
Google Scholar
Cantat, S. & Lamy, S., Normal subgroups in the Cremona group (long version). Preprint, 2010. arXiv:1007.0895 [math.AG].
Cerveau, D. & Déserti, J., Transformations birationnelles de petit degré. Unpublished notes, 2009.
Chaynikov, V., On the generators of the kernels of hyperbolic group presentations. Algebra Discrete Math., 11 (2011), 18–50.
MathSciNet
MATH
Google Scholar
Chiswell, I., Introduction to Λ-Trees. World Scientific, River Edge, NJ, 2001.
Google Scholar
Coble, A. B., Algebraic Geometry and Theta Functions. American Mathematical Society Colloquium Publications, 10. Amer. Math. Soc., Providence, RI, 1982.
Coornaert, M., Delzant, T. & Papadopoulos, A., Géométrie et théorie des groupes. Lecture Notes in Mathematics, 1441. Springer, Berlin–Heidelberg, 1990.
Cossec, F.R. & Dolgachev, I. V., Enriques Surfaces. I. Progress in Mathematics, 76. Birkhäuser, Boston, MA, 1989.
Dahmani, F., Guirardel, V. & Osin, D., Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Preprint, 2011. arXiv:1111.7048 [math.GR].
Google Scholar
Danilov, V. I., Non-simplicity of the group of unimodular automorphisms of an affine plane. Mat. Zametki, 15 (1974), 289–293 (Russian); English translation in Math. Notes, 15 (1974), 165–167.
Delzant, T., Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J., 83 (1996), 661–682.
MathSciNet
MATH
Article
Google Scholar
Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer. Int. Math. Res. Not., 2006 (2006), Art. ID 71701, 27 pp.
— Sur les automorphismes du groupe de Cremona. Compos. Math., 142 (2006), 1459–1478.
MathSciNet
MATH
Article
Google Scholar
— Le groupe de Cremona est hopfien. C. R. Math. Acad. Sci. Paris, 344 (2007), 153–156.
MathSciNet
MATH
Article
Google Scholar
Diller, J. & Favre, C., Dynamics of bimeromorphic maps of surfaces. Amer. J. Math., 123 (2001), 1135–1169.
MathSciNet
MATH
Article
Google Scholar
Dolgachev, I. V., On automorphisms of Enriques surfaces. Invent. Math., 76 (1984), 163–177.
MathSciNet
MATH
Article
Google Scholar
— Infinite Coxeter groups and automorphisms of algebraic surfaces, in The Lefschetz Centennial Conference, Part I (Mexico City, 1984), Contemp. Math., 58, pp. 91–106. Amer. Math. Soc., Providence, RI, 1986.
— Reflection groups in algebraic geometry. Bull. Amer. Math. Soc., 45 (2008), 1–60.
MathSciNet
MATH
Article
Google Scholar
Dolgachev, I.V. & Ortland, D., Point sets in projective spaces and theta functions. Astérisque, 165 (1988).
Dolgachev, I. V. & Zhang, D.-Q., Coble rational surfaces. Amer. J. Math., 123 (2001), 79–114.
MathSciNet
MATH
Article
Google Scholar
Enriques, F., Conferenze di Geometria. Pongetti, Bologna, 1895. http://enriques.mat.uniroma2.it/opere/95006lfl.html.
Ershov, M. & Jaikin-Zapirain, A., Property (T) for noncommutative universal lattices. Invent. Math., 179 (2010), 303–347.
MathSciNet
MATH
Article
Google Scholar
Favre, C., Le groupe de Cremona et ses sous-groupes de type fini, in Séminaire Bourbaki, Vol. 2008/2009, Exp. No. 998, pp. 11–43. Astérisque, 332. Soc. Math. France, Paris, 2010.
Fröhlich, A. & Taylor, M. J., Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, 27. Cambridge University Press, Cambridge, 1993.
Furter, J.-P. & Lamy, S., Normal subgroup generated by a plane polynomial automorphism. Transform. Groups, 15 (2010), 577–610.
MathSciNet
MATH
Article
Google Scholar
Ghys, É. & de la Harpe, P., Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988). Progr. Math., 83. Birkhäuser, Boston, MA, 1990.
Gizatullin, M. H., Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110–144, 239 (Russian); English translation in Math. USSR–Izv, 16 (1981), 103–134.
— The decomposition, inertia and ramification groups in birational geometry, in Algebraic Geometry and its Applications (Yaroslavl′, 1992), Aspects Math., E25, pp. 39–45. Vieweg, Braunschweig, 1994.
Guedj, V., Propriétés ergodiques des applications rationnelles, in Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, 30, pp. 97–202. Soc. Math. France, Paris, 2010.
Halphèn, G., Sur les courbes planes du sixième degrè à neuf points doubles. Bull. Soc. Math. France, 10 (1882), 162–172.
MathSciNet
MATH
Google Scholar
Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York, 1977.
Higman, G., Neumann, B. H. & Neumann, H., Embedding theorems for groups. J. London Math. Soc., 24 (1949), 247–254.
MathSciNet
Article
Google Scholar
Hubbard, J. H., Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006.
Google Scholar
Jung, H.W. E., Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math., 184 (1942), 161–174.
MathSciNet
Google Scholar
Kollár, J., Smith, K.E. & Corti, A., Rational and Nearly Rational Varieties. Cambridge Studies in Advanced Mathematics, 92. Cambridge Univ. Press, Cambridge, 2004.
Google Scholar
Lamy, S., Une preuve géométrique du théorème de Jung. Enseign. Math., 48 (2002), 291–315.
MathSciNet
MATH
Google Scholar
— Groupes de transformations birationnelles de surfaces. Mémoire d’habilitation, Université Lyon 1, Lyon, 2010.
Lazarsfeld, R., Positivity in Algebraic Geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete, 48. Springer, Berlin-Heidelberg, 2004.
Google Scholar
Lyndon, R. C. & Schupp, P. E., Combinatorial Group Theory. Classics in Mathematics. Springer, Berlin–Heidelberg, 2001.
Google Scholar
Manin, Y. I., Cubic Forms. North-Holland Mathematical Library, 4. North-Holland, Amsterdam, 1986.
Mumford, D., Hilbert’s fourteenth problem—the finite generation of subrings such as rings of invariants, in Mathematical Developments Arising from Hilbert Problems (De Kalb, IL, 1974), Proc. Sympos. Pure Math., 28, pp. 431–444. Amer. Math. Soc., Providence, RI, 1976.
Nguyen, D. D., Composantes irréductibles des transformations de Cremona de degré d. Thèse de Mathématique, Univ. Nice, Nice, 2009.
Ol’shanskii, A. Y., SQ-universality of hyperbolic groups. Mat. Sb., 186 (1995), 119–132 (Russian); English translation in Sb. Math., 186 (1995), 1199–1211.
Osin, D., Small cancellations over relatively hyperbolic groups and embedding theorems. Ann. of Math., 172 (2010), 1–39.
MathSciNet
MATH
Article
Google Scholar
Serre, J.-P., Arbres, amalgames, SL2. Astérisque, 46 (1977).
— Le groupe de Cremona et ses sous-groupes finis, in Séminaire Bourbaki, Vol. 2008/2009. Exp. No. 1000, pp. 75–100. Astérisque, 332. Soc. Math. France, Paris, 2010.