Acta Mathematica

, Volume 207, Issue 1, pp 29–201 | Cite as

On Landau damping

  • Clément Mouhot
  • Cédric VillaniEmail author


Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp “deflection” estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions.


Poisson Equation Vlasov Equation Analytic Norm Exponential Moment Analytic Regularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer, A., Akhiezer, I., Polovin, R., Sitenko, A. & Stepanov, K., Plasma Electrodynamics. Vol. I: Linear Theory. Vol. II: Non-Linear Theory and Fluctuations. Pergamon Press, Oxford–New York, 1975.Google Scholar
  2. 2.
    Alinhac, S. & Gérard, P., Pseudo-Differential Operators and the Nash–Moser Theorem. Graduate Studies in Mathematics, 82. Amer. Math. Soc., Providence, RI, 2007.Google Scholar
  3. 3.
    Bach, V., Fröhlich, J. & Sigal, I. M., Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Comm. Math. Phys., 207 (1999), 249–290.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Backus, G., Linearized plasma oscillations in arbitrary electron velocity distributions. J. Math. Phys., 1 (1960), 178–191; erratum, 559.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Balescu, R., Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermodynamics, 4. Wiley, London–New York–Sydney, 1963.Google Scholar
  6. 6.
    Batt, J. & Rein, G., Global classical solutions of the periodic Vlasov–Poisson system in three dimensions. C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411–416.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Belmont, G., Mottez, F., Chust, T. & Hess, S., Existence of non-Landau solutions for Langmuir waves. Phys. of Plasmas, 15 (2008), 052310, 1–14.Google Scholar
  8. 8.
    Benachour, S., Analyticité des solutions des équations de Vlasov–Poisson. Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (1989), 83–104.zbMATHMathSciNetGoogle Scholar
  9. 9.
    Binney, J. & Tremaine, S., Galactic Dynamics. First edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 1987.zbMATHGoogle Scholar
  10. 10.
    Galactic Dynamics. Second edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 2008.Google Scholar
  11. 11.
    Bouchet, F., Stochastic process of equilibrium fluctuations of a system with long-range interactions. Phys. Rev. E, 70 (2004), 036113, 1–4.Google Scholar
  12. 12.
    Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3 (1993), 107–156.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Caglioti, E. & MaffeI, C., Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys., 92 (1998), 301–323.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    CasE, K. M., Plasma oscillations. Ann. Physics, 7 (1959), 349–364.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chavanis, P. H., Quasilinear theory of the 2D Euler equation. Phys. Rev. Lett., 84:24 (2000), 5512–5515.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chavanis, P. H., Sommeria, J., & Robert, R., Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J., 471 (1996), 385–399.CrossRefGoogle Scholar
  17. 17.
    Chemin, J. Y., Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., 9, pp. 99–123. Soc. Math. France, Paris, 2004.Google Scholar
  18. 18.
    Chierchia, L., A. N. Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems. A comment on: “On conservation of conditionally periodic motions for a small change in Hamilton’s function” [Dokl. Akad. Nauk SSSR, 98 (1954), 527–530]. Regul. Chaotic Dyn., 13 (2008), 130–139.Google Scholar
  19. 19.
    Chust, T., Belmont, G., Mottez, F. & Hess, S., Landau and non-Landau linear damping: Physics of the dissipation. Phys. Plasmas, 16 (2009), 092104, 13 pp.Google Scholar
  20. 20.
    Degond, P., Spectral theory of the linearized Vlasov–Poisson equation. Trans. Amer. Math. Soc., 294 (1986), 435–453.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Dereziński, J. & Gérard, C., Scattering Theory of Classical and Quantum N-Particle Systems. Texts and Monographs in Physics. Springer, Berlin–Heidelberg, 1997.Google Scholar
  22. 22.
    Desvillettes, L. & Villani, C., On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math., 54 (2001), 1–42.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Elskens, Y., Irreversible behaviours in Vlasov equation and many-body Hamiltonian dynamics: Landau damping, chaos and granularity, in Topics in Kinetic Theory, Fields Inst. Commun., 46, pp. 89–108. Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  24. 24.
    Elskens, Y. & Escande, D. F., Microscopic Dynamics of Plasmas and Chaos. Institute of Physics, Bristol, 2003.CrossRefzbMATHGoogle Scholar
  25. 25.
    Escande, D. F., Wave-particle interaction in plasmas: a qualitative approach, in Long-Range Interacting Systems, pp. 13–14, 469–506. Oxford University Press, Oxford, 2010.Google Scholar
  26. 26.
    Fathi, A., Weak KAM Theory in Lagrangian Dynamics. Cambridge University Press, Cambridge, 2010.Google Scholar
  27. 27.
    Filbet, F., Numerical simulations. Available online at
  28. 28.
    Fridman, A. M. & Polyachenko, V. L., Physics of Gravitating Systems. Vol. I: Equilibrium and Stability. Vol. II: Nonlinear Collective Processes. Astrophysical Applications. Springer, New York, 1984.Google Scholar
  29. 29.
    Gangbo, W. & Tudorascu, A., Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem. Adv. Math., 224 (2010), 260–292.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Glassey, R. & Schaeffer, J., Time decay for solutions to the linearized Vlasov equation. Transport Theory Statist. Phys., 23 (1994), 411–453.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    — On time decay rates in Landau damping. Comm. Partial Differential Equations, 20 (1995), 647–676.Google Scholar
  32. 32.
    Gould, R., O’Neil, T. & Malmberg, J., Plasma wave echo. Phys. Rev. Letters, 19:5 (1967), 219–222.CrossRefGoogle Scholar
  33. 33.
    Gross, L., Logarithmic Sobolev inequalities. Amer. J. Math., 97 (1975), 1061–1083.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Guo, Y. & Rein, G., A non-variational approach to non-linear stability in stellar dynamics applied to the King model. Comm. Math. Phys., 271 (2007), 489–509.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Guo, Y. & Strauss, W. A., Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 12 (1995), 339–352.zbMATHMathSciNetGoogle Scholar
  36. 36.
    ter Haar, D., Men of Physics: L. D. Landau. Selected Reading of Physics, 2. Pergamon Press, Oxford–New York, 1969.Google Scholar
  37. 37.
    Hauray, M. & Jabin, P.E., N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal., 183 (2007), 489–524.CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Hayes, J.N., On non-Landau damped solutions to the linearized Vlasov equation. Nuovo Cimento, 10:30 (1963), 1048–1063.MathSciNetGoogle Scholar
  39. 39.
    Heath, R., Gamba, I., Morrison, P. & Michler, C., A discontinuous Galerkin method for the Vlasov–Poisson system. To appear in J. Comput. Phys. Google Scholar
  40. 40.
    Horst, E., On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci., 16 (1993), 75–86.CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Hwang, H. J. & Velázquez, J. J. L., On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J., 58:6 (2009), 2623–2660.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Isichenko, M., Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett., 78:12 (1997), 2369–2372.CrossRefGoogle Scholar
  43. 43.
    Jabin, P.E., Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma, 1 (2009), 71–138.zbMATHMathSciNetGoogle Scholar
  44. 44.
    Kaganovich, I.D., Effects of collisions and particle trapping on collisionless heating. Phys. Rev. Lett., 82:2 (1999), 327–330.CrossRefGoogle Scholar
  45. 45.
    van Kampen, N. G., On the theory of stationary waves in plasmas. Physica, 21 (1955), 949–963.CrossRefMathSciNetGoogle Scholar
  46. 46.
    Kandrup, H., Violent relaxation, phase mixing, and gravitational Landau damping. Astrophys. J., 500 (1998), 120–128.CrossRefGoogle Scholar
  47. 47.
    Kiessling, M. K.-H., The “Jeans swindle”: a true story—mathematically speaking. Adv. in Appl. Math., 31 (2003), 132–149.CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    — Personal communication, 2009.Google Scholar
  49. 49.
    Krall, N. & Trivelpiece, A., Principles of Plasma Physics. San Francisco Press, San Francisco, 1986.Google Scholar
  50. 50.
    Kuksin, S. B., Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin–Heidelberg, 1993.Google Scholar
  51. 51.
    Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000.Google Scholar
  52. 52.
    Landau, L., On the vibrations of the electronic plasma. Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz., 16 (1946), 574–586 (Russian); English translation in Acad. Sci. USSR. J. Phys., 10 (1946), 25–34. Reproduced in [36].(19) There is a misprint in formula (17) of this reference (p. 104): replace e (ka)2/2 by e 1/2(ka)2.Google Scholar
  53. 53.
    Lemou, M., Méhats, F. & Raphaël, P., Orbital stability of spherical galactic models. To appear in Invent. Math.Google Scholar
  54. 54.
    Lifshitz, E. M. & Pitaevskiĭ, L.P., Course of Theoretical Physics [“Landau–Lifshits”]. Vol. 10. Nauka, Moscow, 1979. English translation in Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford–New York, 1981.Google Scholar
  55. 55.
    Lin, Z. & Zeng, C., BGK waves and non-linear Landau damping. To appear in Comm. Math. Phys.Google Scholar
  56. 56.
    Lions, P. L. & Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math., 105 (1991), 415–430.CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Lynden-Bell, D., The stability and vibrations of a gas of stars. Mon. Not. R. Astr. Soc., 124 (1962), 279–296.zbMATHGoogle Scholar
  58. 58.
    — Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astr. Soc., 136 (1967), 101–121.Google Scholar
  59. 59.
    Malmberg, J. & Wharton, C., Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett., 13:6 (1964), 184–186.CrossRefGoogle Scholar
  60. 60.
    Malmberg, J., Wharton, C., Gould, R. & O’Neil, T., Plasma wave echo experiment. Phys. Rev. Letters, 20:3 (1968), 95–97.CrossRefGoogle Scholar
  61. 61.
    Manfredi, G., Long-time behavior of non-linear Landau damping. Phys. Rev. Lett., 79:15 (1997), 2815–2818.CrossRefGoogle Scholar
  62. 62.
    Marchioro, C. & Pulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, 96. Springer, New York, 1994.CrossRefGoogle Scholar
  63. 63.
    Maslov, V. P. & Fedoryuk, M.V., The linear theory of Landau damping. Mat. Sb., 127(169) (1985), 445–475, 559 (Russian); English translation in Math. USSR–Sb., 55 (1986), 437–465.Google Scholar
  64. 64.
    Medvedev, M. V., Diamond, P. H., Rosenbluth, M. N. & Shevchenko, V. I., Asymptotic theory of non-linear Landau damping and particle trapping in waves of finite amplitude. Phys. Rev. Lett., 81:26 (1998), 5824–5827.CrossRefGoogle Scholar
  65. 65.
    Miller, J., Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65:17 (1990), 2137–2140.CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Morrison, P. J., Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum, in Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), Transport Theory Statist. Phys., 29, pp. 397–414. Taylor & Francis, Philadelphia, PA, 2000.Google Scholar
  67. 67.
    Moser, J., A rapidly convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 499–535.Google Scholar
  68. 68.
    — Recollections, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, pp. 19–21. Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  69. 69.
    Mouhot, C. & Villani, C., Landau damping. J. Math. Phys., 51 (2010), 015204, 7.MathSciNetGoogle Scholar
  70. 70.
    Nash, J., The imbedding problem for Riemannian manifolds. Ann. of Math., 63 (1956), 20–63.CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Nekhoroshev, N. N., An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspekhi Mat. Nauk, 32 (1977), 5–66, 287 (Russian); English translation in Russian Math. Surveys, 32 (1977), 1–65.Google Scholar
  72. 72.
    — An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II. Trudy Sem. Petrovsk., (1979), 5–50 (Russian); English translation in Topics in Modern Mathematics, pp. 1–58, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1985.Google Scholar
  73. 73.
    Nirenberg, L., An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differential Geom., 6 (1972), 561–576.zbMATHMathSciNetGoogle Scholar
  74. 74.
    Nishida, T., A note on a theorem of Nirenberg. J. Differential Geom., 12 (1977), 629–633 (1978).MathSciNetGoogle Scholar
  75. 75.
    O’Neil, T. M., Collisionless damping of nonlinear plasma oscillations. Phys. Fluids, 8 (1965), 2255–2262.CrossRefMathSciNetGoogle Scholar
  76. 76.
    O’Neil, T. M. & Coroniti, F.V., The collisionless nature of high-temperature plasmas. Rev. Modern Phys., 71:2 (1999), S404–S410.CrossRefGoogle Scholar
  77. 77.
    Penrose, O., Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids, 3 (1960), 258–265.CrossRefzbMATHGoogle Scholar
  78. 78.
    Pfaffelmoser, K., Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differential Equations, 95 (1992), 281–303.CrossRefzbMATHMathSciNetGoogle Scholar
  79. 79.
    Rein, G., Personal communication, 2008.Google Scholar
  80. 80.
    Robert, R., Statistical mechanics and hydrodynamical turbulence, in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, pp. 1523–1531. Birkhäuser, Basel, 1995.Google Scholar
  81. 81.
    Ryutov, D. D., Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion, 41 (1999), A1–A12.CrossRefGoogle Scholar
  82. 82.
    Sáenz, A. W., Long-time behavior of the electric potential and stability in the linearized Vlasov theory. J. Math. Phys., 6 (1965), 859–875.CrossRefGoogle Scholar
  83. 83.
    Saint Raymond, X., A simple Nash–Moser implicit function theorem. Enseign. Math., 35 (1989), 217–226.zbMATHMathSciNetGoogle Scholar
  84. 84.
    Schaeffer, J., Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Comm. Partial Differential Equations, 16 (1991), 1313–1335.CrossRefzbMATHMathSciNetGoogle Scholar
  85. 85.
    Soffer, A. &Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys., 133 (1990), 119–146.CrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    Spentzouris, L., Ostiguy, J. & Colestock, P., Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. Phys. Rev. Lett., 76:4 (1996), 620–623.CrossRefGoogle Scholar
  87. 87.
    Stahl, B., Kiessling, M. K.-H. & Schindler, K., Phase transitions in gravitating systems and the formation of condensed objects. Planet. Space Sci., 43 (1995), 271–282.CrossRefGoogle Scholar
  88. 88.
    Stix, T. H., The Theory of Plasma Waves. McGraw-Hill, New York, 1962.zbMATHGoogle Scholar
  89. 89.
    Tremaine, S., Hénon, M. & Lynden-Bell, D., H-functions and mixing in violent relaxation. Mon. Not. R. Astr. Soc., 219 (1986), 285–297.zbMATHGoogle Scholar
  90. 90.
    Turkington, B., Statistical equilibrium measures and coherent states in two-dimensional turbulence. Comm. Pure Appl. Math., 52 (1999), 781–809.CrossRefMathSciNetGoogle Scholar
  91. 91.
    Vekstein, G. E., Landau resonance mechanism for plasma and wind-generated water waves. Amer. J. Phys., 66:10 (1998), 886–892.CrossRefGoogle Scholar
  92. 92.
    Villani, C., A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, pp. 71–305. North-Holland, Amsterdam, 2002.Google Scholar
  93. 93.
    — Hypocoercivity. Mem. Amer. Math. Soc., 202 (2009), iv+141.Google Scholar
  94. 94.
    Wiechen, H., Ziegler, H. J. & Schindler, K., Relaxation of collisionless self-gravitating matter – the lowest energy state. Mon. Not. R. Astr. Soc., 232 (1988), 623–646.zbMATHGoogle Scholar
  95. 95.
    Zhou, T., Guo, Y. & Shu, C.-W., Numerical study on Landau damping. Phys. D, 157 (2001), 322–333.CrossRefzbMATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2011

Authors and Affiliations

  1. 1.University of Cambridge, DPMMS, Centre for Mathematical SciencesCambridgeUK
  2. 2.Institut Henri Poincaré & Université de Lyon, Institut Camille Jordan, Université Claude BernardVilleurbanne CedexFrance

Personalised recommendations