Aizenman, M., Duplantier, B. & Aharony, A., Path-crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Let., 83 (1999), 1359–1362.
Article
Google Scholar
Benjamini, I., Häggström, O., Peres, Y. & Steif, J. E., Which properties of a random sequence are dynamically sensitive? Ann. Probab., 31 (2003), 1–34.
MATH
Article
MathSciNet
Google Scholar
Benjamini, I., Kalai, G. & Schramm, O., Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90 (1999), 5–43 (2001).
Google Scholar
Benjamini, I. & Schramm, O., Exceptional planes of percolation. Probab. Theory Related Fields, 111 (1998), 551–564.
MATH
Article
MathSciNet
Google Scholar
van den Berg, J., Meester, R. & White, D. G., Dynamic Boolean models. Stochastic Process. Appl., 69 (1997), 247–257.
MATH
Article
MathSciNet
Google Scholar
Bernstein, E. & Vazirani, U., Quantum complexity theory. SIAM J. Comput., 26 (1997), 1411–1473.
MATH
Article
MathSciNet
Google Scholar
Broman, E. I. & Steif, J. E., Dynamical stability of percolation for some interacting particle systems and ε-movability. Ann. Probab., 34 (2006), 539–576.
MATH
Article
MathSciNet
Google Scholar
Friedgut, E. & Kalai, G., Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124 (1996), 2993–3002.
MATH
Article
MathSciNet
Google Scholar
Garban, C., Pete, G. & Schramm, O., Pivotal, cluster and interface measures for critical planar percolation. Preprint, 2010. arXiv:1008.1378v1 [math.PR].
— The scaling limits of dynamical and near-critical percolation. In preparation.
Grimmett, G., Percolation. Grundlehren der Mathematischen Wissenschaften, 321. Springer, Berlin–Heidelberg, 1999.
MATH
Google Scholar
Hammond, A., Pete, G. & Schramm, O., Local time for dynamical percolation, and the incipient infinite cluster. In preparation.
Hoffman, C., Recurrence of simple random walk on ℤ2 is dynamically sensitive. ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 35–45.
MATH
MathSciNet
Google Scholar
Häggström, O. & Pemantle, R., On near-critical and dynamical percolation in the tree case. Random Structures Algorithms, 15 (1999), 311–318.
MATH
Article
MathSciNet
Google Scholar
Häggström, O., Peres, Y. & Steif, J.E., Dynamical percolation. Ann. Inst. Henri Poincaré Probab. Statist., 33 (1997), 497–528.
MATH
Article
Google Scholar
Jonasson, J. & Steif, J.E., Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab., 36 (2008), 739–764.
MATH
Article
MathSciNet
Google Scholar
Kahn, J., Kalai, G. & Linial, N., The influence of variables on boolean functions, in 29th Annual Symposium on Foundations of Computer Science, pp. 68–80. IEEE Computer Society, Los Alamitos, CA, 1988.
Google Scholar
Kalai, G. & Safra, S., Threshold phenomena and influence: perspectives from Mathematics, Computer Science, and Economics, in Computational Complexity and Statistical Physics, St. Fe Inst. Stud. Sci. Complex., pp. 25–60. Oxford Univ. Press, New York, 2006.
Google Scholar
Kesten, H., The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields, 73 (1986), 369–394.
MATH
Article
MathSciNet
Google Scholar
— Scaling relations for 2D-percolation. Comm. Math. Phys., 109 (1987), 109–156.
Kesten, H., Sidoravicius, V. & Zhang, Y., Almost all words are seen in critical site percolation on the triangular lattice. Electron. J. Probab., 3 (1998), 75 pp.
MathSciNet
Google Scholar
Khoshnevisan, D., Dynamical percolation on general trees. Probab. Theory Related Fields, 140 (2008), 169–193.
MATH
Article
MathSciNet
Google Scholar
Khoshnevisan, D., Levin, D. A. & Méndez-Hernández, P. J., Exceptional times and invariance for dynamical random walks. Probab. Theory Related Fields, 134 (2006), 383–416.
MATH
Article
MathSciNet
Google Scholar
Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents. II. Plane exponents. Acta Math., 187 (2001), 275–308.
MATH
Article
MathSciNet
Google Scholar
— One-arm exponent for critical 2D percolation. Electron. J. Probab., 7 (2002), 13 pp.
Liggett, T. M., Schonmann, R. H. & Stacey, A. M., Domination by product measures. Ann. Probab., 25 (1997), 71–95.
MATH
Article
MathSciNet
Google Scholar
Linial, N., Mansour, Y. & Nisan, N., Constant depth circuits, Fourier transform, and learnability. J. Assoc. Comput. Mach., 40 (1993), 607–620.
MATH
MathSciNet
Google Scholar
Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
MATH
Google Scholar
Mörters, P. & Peres, Y., Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
MATH
Google Scholar
Nolin, P., Near-critical percolation in two dimensions. Electron. J. Probab., 13 (2008), 1562–1623.
MATH
MathSciNet
Google Scholar
Peres, Y., Schramm, O. & Steif, J. E., Dynamical sensitivity of the infinite cluster in critical percolation. Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 491–514.
MATH
Article
MathSciNet
Google Scholar
Peres, Y. & Steif, J.E., The number of infinite clusters in dynamical percolation. Probab. Theory Related Fields, 111 (1998), 141–165.
MATH
Article
MathSciNet
Google Scholar
Reimer, D., Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput., 9 (2000), 27–32.
MATH
Article
MathSciNet
Google Scholar
Schramm, O., Conformally invariant scaling limits: an overview and a collection of problems, in International Congress of Mathematicians (Madrid, 2006). Vol. I, pp. 513–543. Eur. Math. Soc., Zürich, 2007.
Schramm, O. & Smirnov, S., On the scaling limits of planar percolation. To appear in Ann. Probab
Schramm, O. & Steif, J.E., Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math., 171 (2010), 619–672.
MATH
Article
MathSciNet
Google Scholar
Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.
MATH
Google Scholar
— Towards conformal invariance of 2D lattice models, in International Congress of Mathematicians (Madrid, 2006). Vol. II, pp. 1421–1451. Eur. Math. Soc., Zürich, 2006.
Smirnov, S. & Werner, W., Critical exponents for two-dimensional percolation. Math. Res. Lett., 8 (2001), 729–744.
MATH
MathSciNet
Google Scholar
Tsirelson, B., Scaling limit, noise, stability, in Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, pp. 1–106. Springer, Berlin–Heidelberg, 2004.
Google Scholar
Werner, W., Lectures on two-dimensional critical percolation, in Statistical Mechanics, IAS/Park City Math. Ser., 16, pp. 297–360. Amer. Math. Soc., Providence, RI, 2009.