Acta Mathematica

, Volume 205, Issue 1, pp 19–104 | Cite as

The Fourier spectrum of critical percolation

Article

Abstract

Consider the indicator function f of a 2-dimensional percolation crossing event. In this paper, the Fourier transform of f is studied and sharp bounds are obtained for its lower tail in several situations. Various applications of these bounds are derived. In particular, we show that the set of exceptional times of dynamical critical site percolation on the triangular grid in which the origin percolates has dimension \({\frac{31}{36}}\) almost surely, and the corresponding dimension in the half-plane is \({\frac{5}{9}}\) . It is also proved that critical bond percolation on the square grid has exceptional times almost surely. Also, the asymptotics of the number of sites that need to be resampled in order to significantly perturb the global percolation configuration in a large square is determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ADA]
    Aizenman, M., Duplantier, B. & Aharony, A., Path-crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Let., 83 (1999), 1359–1362.CrossRefGoogle Scholar
  2. [BHPS]
    Benjamini, I., Häggström, O., Peres, Y. & Steif, J. E., Which properties of a random sequence are dynamically sensitive? Ann. Probab., 31 (2003), 1–34.MATHCrossRefMathSciNetGoogle Scholar
  3. [BKS]
    Benjamini, I., Kalai, G. & Schramm, O., Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90 (1999), 5–43 (2001).Google Scholar
  4. [BS]
    Benjamini, I. & Schramm, O., Exceptional planes of percolation. Probab. Theory Related Fields, 111 (1998), 551–564.MATHCrossRefMathSciNetGoogle Scholar
  5. [BMW]
    van den Berg, J., Meester, R. & White, D. G., Dynamic Boolean models. Stochastic Process. Appl., 69 (1997), 247–257.MATHCrossRefMathSciNetGoogle Scholar
  6. [BV]
    Bernstein, E. & Vazirani, U., Quantum complexity theory. SIAM J. Comput., 26 (1997), 1411–1473.MATHCrossRefMathSciNetGoogle Scholar
  7. [BrS]
    Broman, E. I. & Steif, J. E., Dynamical stability of percolation for some interacting particle systems and ε-movability. Ann. Probab., 34 (2006), 539–576.MATHCrossRefMathSciNetGoogle Scholar
  8. [FK]
    Friedgut, E. & Kalai, G., Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124 (1996), 2993–3002.MATHCrossRefMathSciNetGoogle Scholar
  9. [GPS1]
    Garban, C., Pete, G. & Schramm, O., Pivotal, cluster and interface measures for critical planar percolation. Preprint, 2010. arXiv:1008.1378v1 [math.PR].Google Scholar
  10. [GPS2]
    — The scaling limits of dynamical and near-critical percolation. In preparation.Google Scholar
  11. [G]
    Grimmett, G., Percolation. Grundlehren der Mathematischen Wissenschaften, 321. Springer, Berlin–Heidelberg, 1999.MATHGoogle Scholar
  12. [HPS]
    Hammond, A., Pete, G. & Schramm, O., Local time for dynamical percolation, and the incipient infinite cluster. In preparation.Google Scholar
  13. [H]
    Hoffman, C., Recurrence of simple random walk on ℤ2 is dynamically sensitive. ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 35–45.MATHMathSciNetGoogle Scholar
  14. [HP]
    Häggström, O. & Pemantle, R., On near-critical and dynamical percolation in the tree case. Random Structures Algorithms, 15 (1999), 311–318.MATHCrossRefMathSciNetGoogle Scholar
  15. [HPSt]
    Häggström, O., Peres, Y. & Steif, J.E., Dynamical percolation. Ann. Inst. Henri Poincaré Probab. Statist., 33 (1997), 497–528.MATHCrossRefGoogle Scholar
  16. [JS]
    Jonasson, J. & Steif, J.E., Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab., 36 (2008), 739–764.MATHCrossRefMathSciNetGoogle Scholar
  17. [KKL]
    Kahn, J., Kalai, G. & Linial, N., The influence of variables on boolean functions, in 29th Annual Symposium on Foundations of Computer Science, pp. 68–80. IEEE Computer Society, Los Alamitos, CA, 1988.Google Scholar
  18. [KS]
    Kalai, G. & Safra, S., Threshold phenomena and influence: perspectives from Mathematics, Computer Science, and Economics, in Computational Complexity and Statistical Physics, St. Fe Inst. Stud. Sci. Complex., pp. 25–60. Oxford Univ. Press, New York, 2006.Google Scholar
  19. [K1]
    Kesten, H., The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields, 73 (1986), 369–394.MATHCrossRefMathSciNetGoogle Scholar
  20. K2.
    — Scaling relations for 2D-percolation. Comm. Math. Phys., 109 (1987), 109–156.Google Scholar
  21. [KSZ]
    Kesten, H., Sidoravicius, V. & Zhang, Y., Almost all words are seen in critical site percolation on the triangular lattice. Electron. J. Probab., 3 (1998), 75 pp.MathSciNetGoogle Scholar
  22. [Kh]
    Khoshnevisan, D., Dynamical percolation on general trees. Probab. Theory Related Fields, 140 (2008), 169–193.MATHCrossRefMathSciNetGoogle Scholar
  23. [KLM]
    Khoshnevisan, D., Levin, D. A. & Méndez-Hernández, P. J., Exceptional times and invariance for dynamical random walks. Probab. Theory Related Fields, 134 (2006), 383–416.MATHCrossRefMathSciNetGoogle Scholar
  24. [LSW1]
    Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents. II. Plane exponents. Acta Math., 187 (2001), 275–308.MATHCrossRefMathSciNetGoogle Scholar
  25. [LSW2]
    — One-arm exponent for critical 2D percolation. Electron. J. Probab., 7 (2002), 13 pp. Google Scholar
  26. [LSS]
    Liggett, T. M., Schonmann, R. H. & Stacey, A. M., Domination by product measures. Ann. Probab., 25 (1997), 71–95.MATHCrossRefMathSciNetGoogle Scholar
  27. [LMN]
    Linial, N., Mansour, Y. & Nisan, N., Constant depth circuits, Fourier transform, and learnability. J. Assoc. Comput. Mach., 40 (1993), 607–620.MATHMathSciNetGoogle Scholar
  28. [M]
    Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  29. [MP]
    Mörters, P. & Peres, Y., Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.MATHGoogle Scholar
  30. [N]
    Nolin, P., Near-critical percolation in two dimensions. Electron. J. Probab., 13 (2008), 1562–1623.MATHMathSciNetGoogle Scholar
  31. [PSS]
    Peres, Y., Schramm, O. & Steif, J. E., Dynamical sensitivity of the infinite cluster in critical percolation. Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 491–514.MATHCrossRefMathSciNetGoogle Scholar
  32. [PS]
    Peres, Y. & Steif, J.E., The number of infinite clusters in dynamical percolation. Probab. Theory Related Fields, 111 (1998), 141–165.MATHCrossRefMathSciNetGoogle Scholar
  33. [R]
    Reimer, D., Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput., 9 (2000), 27–32.MATHCrossRefMathSciNetGoogle Scholar
  34. [Sch]
    Schramm, O., Conformally invariant scaling limits: an overview and a collection of problems, in International Congress of Mathematicians (Madrid, 2006). Vol. I, pp. 513–543. Eur. Math. Soc., Zürich, 2007.Google Scholar
  35. [SS]
    Schramm, O. & Smirnov, S., On the scaling limits of planar percolation. To appear in Ann. Probab Google Scholar
  36. [SSt]
    Schramm, O. & Steif, J.E., Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math., 171 (2010), 619–672.MATHCrossRefMathSciNetGoogle Scholar
  37. [Sm1]
    Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.MATHGoogle Scholar
  38. [Sm2]
    — Towards conformal invariance of 2D lattice models, in International Congress of Mathematicians (Madrid, 2006). Vol. II, pp. 1421–1451. Eur. Math. Soc., Zürich, 2006.Google Scholar
  39. [SW]
    Smirnov, S. & Werner, W., Critical exponents for two-dimensional percolation. Math. Res. Lett., 8 (2001), 729–744.MATHMathSciNetGoogle Scholar
  40. [T]
    Tsirelson, B., Scaling limit, noise, stability, in Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, pp. 1–106. Springer, Berlin–Heidelberg, 2004.Google Scholar
  41. [W]
    Werner, W., Lectures on two-dimensional critical percolation, in Statistical Mechanics, IAS/Park City Math. Ser., 16, pp. 297–360. Amer. Math. Soc., Providence, RI, 2009.Google Scholar

Copyright information

© Institut Mittag-Leffler 2010

Authors and Affiliations

  1. 1.CNRS Département de mathématiques (UMPA) École normale supérieure de LyonLyon Cedex 07France
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Theory Group of Microsoft ResearchOne Microsoft WayRedmondU.S.A.

Personalised recommendations