Skip to main content
Log in

A Selberg integral for the Lie algebra A n

  • Published:
Acta Mathematica

Abstract

A new q-binomial theorem for Macdonald polynomials is employed to prove an A n analogue of the celebrated Selberg integral. This confirms the \( \mathfrak{g} ={\rm{A}}_{n}\) case of a conjecture by Mukhin and Varchenko concerning the existence of a Selberg integral for every simple Lie algebra \( \mathfrak{g} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G. E., Askey, R. & Roy, R., Special Functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  2. Aomoto, K., Jacobi polynomials associated with Selberg integrals. SIAM J. Math. Anal., 18:2 (1987), 545–549.

    Article  MATH  MathSciNet  Google Scholar 

  3. Askey, R., Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal., 11:6 (1980), 938–951.

    Article  MATH  MathSciNet  Google Scholar 

  4. Baker, T. H. & Forrester, P. J., Transformation formulas for multivariable basic hypergeometric series. Methods Appl. Anal., 6 (1999), 147–164.

    MATH  MathSciNet  Google Scholar 

  5. Dunkl, C. F. & Xu, Y., Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, 81. Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  6. Etingof, P. I., Frenkel, I. B. & Kirillov, A. A. J, Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations. Mathematical Surveys and Monographs, 58. Amer. Math. Soc., Providence, RI, 1998.

    MATH  Google Scholar 

  7. Euler, L., De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt. Comm. Acad. Sci. Petropolitanae, 5 (1730), 36–57 (Latin). math.dartmouth.edu/~euler/pages/E019.html.

    Google Scholar 

  8. Forrester, P. J. & Warnaar, S. O., The importance of the Selberg integral. Bull. Amer. Math. Soc., 45 (2008), 489–534.

    Article  MATH  MathSciNet  Google Scholar 

  9. Garvan, F. G., Some Macdonald–Mehta integrals by brute force, in q-Series and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl., 18, pp. 77–98. Springer, New York, 1989.

    Google Scholar 

  10. Gasper, G. & Rahman, M., Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  11. Kadell, K. W. J., The Selberg–Jack symmetric functions. Adv. Math., 130 (1997), 33–102.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaneko, J., q-Selberg integrals and Macdonald polynomials. Ann. Sci. École Norm. Sup., 29 (1996), 583–637.

    MATH  Google Scholar 

  13. Kaneko, J., A triple product identity for Macdonald polynomials. J. Math. Anal. Appl., 200 (1996), 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lascoux, A., Symmetric Functions and Combinatorial Operators on Polynomials. CBMS Regional Conference Series in Mathematics, 99. Amer. Math. Soc., Providence, RI, 2003.

    MATH  Google Scholar 

  15. Macdonald, I. G., Some conjectures for root systems. SIAM J. Math. Anal., 13 (1982), 988–1007.

    Article  MATH  MathSciNet  Google Scholar 

  16. Macdonald, I. G., Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  17. Macdonald, I. G., Hypergeometric Series II. Unpublished manuscript.

  18. Mehta, M. L., Random Matrices. Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004.

    Google Scholar 

  19. Mimachi, K. & Noumi, M., A reproducing kernel for nonsymmetric Macdonald polynomials. Duke Math. J., 91 (1998), 621–634.

    Article  MATH  MathSciNet  Google Scholar 

  20. Mukhin, E. & Varchenko, A., Remarks on critical points of phase functions and norms of Bethe vectors, in Arrangements (Tokyo, 1998), Adv. Stud. Pure Math., 27, pp. 239–246. Kinokuniya, Tokyo, 2000.

    Google Scholar 

  21. Opdam, E. M., Some applications of hypergeometric shift operators. Invent. Math., 98 (1989), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  22. Opdam, E. M., Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compos. Math., 85 (1993), 333–373.

    MATH  MathSciNet  Google Scholar 

  23. Schechtman, V. V. & Varchenko, A. N., Arrangements of hyperplanes and Lie algebra homology. Invent. Math., 106 (1991), 139–194.

    Article  MATH  MathSciNet  Google Scholar 

  24. Selberg, A., Bemerkninger om et multipelt integral [Remarks on a multiple integral]. Norsk Mat. Tidsskr., 26 (1944), 71–78 (Norwegian).

    MATH  MathSciNet  Google Scholar 

  25. Stanley, R. P., Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  26. Tarasov, V. & Varchenko, A., Selberg-type integrals associated with \( \mathfrak{sl}_{3}\). Lett. Math. Phys., 65 (2003), 173–185.

    Article  MATH  MathSciNet  Google Scholar 

  27. Thomae, J., Abriss einer Theorie der complexen Functionen und der Thetafunctionen einer Veränderlichen. Nebert, Halle, 1873. gallica.bnf.fr/ark:/12148/bpt6k995936.

    Google Scholar 

  28. Varchenko, A., Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups. Advanced Series in Mathematical Physics, 21. World Scientific, River Edge, NJ, 1995.

    MATH  Google Scholar 

  29. Varchenko, A., Special Functions, KZ type Equations, and Representation Theory. CBMS Regional Conference Series in Mathematics, 98. Amer. Math. Soc., Providence, RI, 2003.

    MATH  Google Scholar 

  30. Varchenko, A., Selberg integrals. Preprint, 2004. arXiv:math/0408308 [math.QA].

  31. Warnaar, S. O., q-Selberg integrals and Macdonald polynomials. Ramanujan J., 10 (2005), 237–268.

    Article  MATH  MathSciNet  Google Scholar 

  32. Varchenko, A., Bisymmetric functions, Macdonald polynomials and \( \mathfrak{sl}_{3}\) basic hypergeometric series. Compos. Math., 144 (2008), 271–303.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ole Warnaar.

Additional information

To the memory of Atle Selberg

Work supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnaar, S.O. A Selberg integral for the Lie algebra A n . Acta Math 203, 269–304 (2009). https://doi.org/10.1007/s11511-009-0043-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-009-0043-x

Keywords

2000 Math. Subject Classification

Navigation