Skip to main content
Log in

Quantum decay rates in chaotic scattering

  • Published:
Acta Mathematica

Abstract

We study quantum scattering on manifolds equivalent to the Euclidean space near infinity, in the semiclassical regime. We assume that the corresponding classical flow admits a non-trivial trapped set, and that the dynamics on this set is of Axiom A type (uniformly hyperbolic). We are interested in the distribution of quantum resonances near the real axis. In two dimensions, we prove that, if the trapped set is sufficiently “thin”, then there exists a gap between the resonances and the real axis (that is, quantum decay rates are bounded from below). In higher dimension, the condition for this gap is given in terms of a certain topological pressure associated with the classical flow. Under the same assumption, we also prove a resolvent estimate with a logarithmic loss compared to non-trapping situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman, N., Entropy and the localization of eigenfunctions. Ann. of Math., 168 (2008), 435–475.

    Article  MATH  MathSciNet  Google Scholar 

  2. Anantharaman, N. & Nonnenmacher, S., Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble), 57 (2007), 2465–2523.

    MATH  MathSciNet  Google Scholar 

  3. Bindel, D. & Zworski, M., Theory and computation of resonances in 1D scattering. http://www.cs.cornell.edu/~bindel/cims/resonant1d.

  4. Bowen, R. & Ruelle, D., The ergodic theory of Axiom A flows. Invent. Math., 29 (1975), 181–202.

    Article  MATH  MathSciNet  Google Scholar 

  5. Burq, N., Contrôle de l’équation des plaques en présence d’obstacles strictement convexes. Mém. Soc. Math. France, 55 (1993).

  6. Burq, N. & Zworski, M., Geometric control in the presence of a black box. J. Amer. Math. Soc., 17 (2004), 443–471.

    Article  MATH  MathSciNet  Google Scholar 

  7. Christianson, H., Cutoff resolvent estimates and the semilinear Schrödinger equation. Proc. Amer. Math. Soc., 136:10 (2008), 3513–3520.

    Article  MATH  MathSciNet  Google Scholar 

  8. — Dispersive estimates for manifolds with one trapped orbit. Comm. Partial Differential Equations, 33 (2008), 1147–1174.

    Article  MATH  MathSciNet  Google Scholar 

  9. Datchev, K., Local smoothing for scattering manifolds with hyperbolic trapped sets. Comm. Math. Phys., 286 (2009), 837–850.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dencker, N., Sjöstrand, J. & Zworski, M., Pseudospectra of semiclassical (pseudo-) differential operators. Comm. Pure Appl. Math., 57 (2004), 384–415.

    Article  MATH  MathSciNet  Google Scholar 

  11. Dimassi, M. & Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  12. Doi, S., Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J., 82 (1996), 679–706.

    Article  MATH  MathSciNet  Google Scholar 

  13. Evans, L. C. & Zworski, M., Lectures on Semiclassical Analysis. http://math.berkeley.edu/~zworski/semiclassical.pdf.

  14. Gaspard, P. & Rice, S. A., Semiclassical quantization of the scattering from a classically chaotic repellor. J. Chem. Phys., 90:4 (1989), 2242–2254.

    Article  MathSciNet  Google Scholar 

  15. Gérard, C. & Sjöstrand, J., Semiclassical resonances generated by a closed trajectory of hyperbolic type. Comm. Math. Phys., 108 (1987), 391–421.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gérard, P., Mesures semi-classiques et ondes de Bloch, in Séminaire sur les Équations aux Dérivées Partielles (1990–1991), Exp. No. XVI. École Polytech., Palaiseau, 1991.

  17. Hörmander, L., The Analysis of Linear Partial Differential Operators. I, II. Grundlehren der Mathematischen Wissenschaften, 256, 257. Springer, Berlin–Heidelberg, 1983.

  18. Ikawa, M., Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier (Grenoble), 38:2 (1988), 113–146.

    MATH  MathSciNet  Google Scholar 

  19. Katok, A. & Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  20. Keating, J. P., Novaes, M., Prado, S. D. & Sieber, M., Semiclassical structure of chaotic resonance eigenfunctions. Phys. Rev. Lett., 97:15 (2006), 150406.

    Article  Google Scholar 

  21. Klopp, F. & Zworski, M., Generic simplicity of resonances. Helv. Phys. Acta, 68 (1995), 531–538.

    MATH  MathSciNet  Google Scholar 

  22. Lin, K. K., Numerical study of quantum resonances in chaotic scattering. J. Comput. Phys., 176 (2002), 295–329.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lin, K. K. & Zworski, M., Quantum resonances in chaotic scattering. Chem. Phys. Lett., 355 (2002), 201–205.

    Article  Google Scholar 

  24. Lu, W. T., Sridhar, S. & Zworski, M., Fractal Weyl laws for chaotic open systems. Phys. Rev. Lett., 91:15 (2003), 154101.

    Article  Google Scholar 

  25. Martinez, A., Resonance free domains for non globally analytic potentials. Ann. Henri Poincaré, 3 (2002), 739–756.

    Article  MATH  Google Scholar 

  26. Morita, T., Periodic orbits of a dynamical system in a compound central field and a perturbed billiards system. Ergodic Theory Dynam. Systems, 14 (1994), 599–619.

    Article  MATH  MathSciNet  Google Scholar 

  27. Nakamura, S., Stefanov, P. & Zworski, M., Resonance expansions of propagators in the presence of potential barriers. J. Funct. Anal., 205 (2003), 180–205.

    Article  MATH  MathSciNet  Google Scholar 

  28. Naud, F., Classical and quantum lifetimes on some non-compact Riemann surfaces. J. Phys. A, 38:49 (2005), 10721–10729.

    Article  MATH  MathSciNet  Google Scholar 

  29. Nonnenmacher, S. & Rubin, M., Resonant eigenstates for a quantized chaotic system. Nonlinearity, 20:6 (2007), 1387–1420.

    Article  MATH  MathSciNet  Google Scholar 

  30. Nonnenmacher, S. & Zworski, M., Fractal Weyl laws in discrete models of chaotic scattering. J. Phys. A, 38:49 (2005), 10683–10702.

    Article  MATH  MathSciNet  Google Scholar 

  31. — Distribution of resonances for open quantum maps. Comm. Math. Phys., 269 (2007), 311–365.

    Article  MATH  MathSciNet  Google Scholar 

  32. — Semiclassical resolvent estimates in chaotic scattering. Appl. Math. Res. Express, 2009 (2009), 1–13.

    Google Scholar 

  33. Pesin, Y. B. & Sadovskaya, V., Multifractal analysis of conformal Axiom A flows. Comm. Math. Phys., 216 (2001), 277–312.

    Article  MATH  MathSciNet  Google Scholar 

  34. Petkov, V. & Stoyanov, L., Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function. C. R. Math. Acad. Sci. Paris, 345 (2007), 567–572.

    MATH  MathSciNet  Google Scholar 

  35. Ruelle, D., Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley, Reading, MA, 1978.

  36. Schomerus, H. & Tworzydło, J., Quantum-to-classical crossover of quasibound states in open quantum systems. Phys. Rev. Lett., 93:15 (2004), 154102.

    Article  Google Scholar 

  37. Shubin, M. A. & Sjöstrand, J., Appendix to Weak Bloch property and weight estimates for elliptic operators, in Séminaire sur les Équations aux Dérivées Partielles (1989–1990), Exp. No. V. École Polytech., Palaiseau, 1990.

  38. Sjöstrand, J., Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J., 60 (1990), 1–57.

    Article  MATH  MathSciNet  Google Scholar 

  39. — A trace formula and review of some estimates for resonances, in Microlocal Analysis and Spectral Theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, pp. 377–437. Kluwer Acad. Publ., Dordrecht, 1997.

  40. — Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Preprint, 2008. arXiv:0802.3584 [math.SP].

  41. Sjöstrand, J. & Zworski, M., Quantum monodromy and semi-classical trace formulae. J. Math. Pures Appl., 81 (2002), 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  42. — Fractal upper bounds on the density of semiclassical resonances. Duke Math. J., 137 (2007), 381–459.

    Article  MATH  MathSciNet  Google Scholar 

  43. Tang, S. H. & Zworski, M., From quasimodes to reasonances. Math. Res. Lett., 5 (1998), 261–272.

    MathSciNet  Google Scholar 

  44. Walters, P., An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer, New York, 1982.

    MATH  Google Scholar 

  45. Wirzba, A., Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems. Phys. Rep., 309 (1999).

  46. Wojtkowski, M. P., Design of hyperbolic billiards. Comm. Math. Phys., 273 (2007), 283–304.

    Article  MATH  MathSciNet  Google Scholar 

  47. Zworski, M., Resonances in physics and geometry. Notices Amer. Math. Soc., 46 (1999), 319–328.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Nonnenmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonnenmacher, S., Zworski, M. Quantum decay rates in chaotic scattering. Acta Math 203, 149–233 (2009). https://doi.org/10.1007/s11511-009-0041-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-009-0041-z

Keywords

Navigation