Ahlfors, L. V., Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York, 1973.
Google Scholar
Beffara, V., The dimension of the SLE curves. Ann. Probab., 36:4 (2008), 1421–1452.
MATH
Article
MathSciNet
Google Scholar
Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241 (1984), 333–380.
MATH
Article
MathSciNet
Google Scholar
Bricmont, J., El Mellouki, A. & Fröhlich, J., Random surfaces in statistical mechanics: roughening, rounding, wetting,…. J. Stat. Phys., 42:5–6 (1986), 743–798.
Article
Google Scholar
Camia, F. & Newman, C. M., Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys., 268 (2006), 1–38.
MATH
Article
MathSciNet
Google Scholar
Cardy, J., SLE for theoretical physicists. Ann. Physics, 318 (2005), 81–118.
MATH
Article
MathSciNet
Google Scholar
Coniglio, A., Fractal structure of Ising and Potts clusters: exact results. Phys. Rev. Lett., 62:26 (1989), 3054–3057.
Article
MathSciNet
Google Scholar
Di Francesco, P., Mathieu, P. & Sénéchal, D., Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York, 1997.
Google Scholar
Doyle, P. G. & Snell, J. L., Random Walks and Electric Networks. Carus Mathematical Monographs, 22. Mathematical Association of America, Washington, DC, 1984.
Google Scholar
Duplantier, B., Two-dimensional fractal geometry, critical phenomena and conformal invariance. Phys. Rep., 184 (1989), 229–257.
Article
MathSciNet
Google Scholar
Duplantier, B. & Saleur, H., Exact critical properties of two-dimensional dense self-avoiding walks. Nuclear Phys. B, 290 (1987), 291–326.
Article
MathSciNet
Google Scholar
— Winding-angle distributions of two-dimensional self-avoiding walks from conformal invariance. Phys. Rev. Lett., 60:23 (1988), 2343–2346.
Article
MathSciNet
Google Scholar
Foltin, G., An alternative field theory for the Kosterlitz–Thouless transition. J. Phys. A, 34:26 (2001), 5327–5333.
Article
Google Scholar
Fröhlich, J. & Spencer, T., The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Comm. Math. Phys., 81 (1981), 527–602.
Article
MathSciNet
Google Scholar
Gȩdzki, K., Lectures on conformal field theory, in Quantum Fields and Strings: a Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 727–805. Amer. Math. Soc., Providence, RI, 1999.
Google Scholar
Giacomin, G., Limit theorems for random interface models of Ginzburg–Landau ∇ϕ type, in Stochastic Partial Differential Equations and Applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., 227, pp. 235–253. Dekker, New York, 2002.
Google Scholar
Glimm, J. & Jaffe, A., Quantum Physics. Springer, New York, 1987.
Google Scholar
Huber, G. & Kondev, J., Passive-scalar turbulence and the geometry of loops. Bull. Amer. Phys. Soc., DCOMP Meeting 2001, Q2.008.
Isichenko, M. B., Percolation, statistical topography, and transport in random media. Rev. Modern Phys., 64:4 (1992), 961–1043.
Article
MathSciNet
Google Scholar
Kadanoff, L. P., Lattice Coulomb gas representations of two-dimensional problems. J. Phys. A, 11:7 (1978), 1399–1417.
Article
MathSciNet
Google Scholar
Kager, W. & Nienhuis, B., A guide to stochastic Löwner evolution and its applications. J. Stat. Phys., 115:5–6 (2004), 1149–1229.
Article
MathSciNet
MATH
Google Scholar
Karatzas, I. & Shreve, S. E., Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 113. Springer, New York, 1988.
Google Scholar
Kenyon, R., Dominos and the Gaussian free field. Ann. Probab., 29:3 (2001), 1128–1137.
MATH
Article
MathSciNet
Google Scholar
Kondev, J., Du, S. & Huber, G., Two-dimensional passive-scalar turbulence and the geometry of loops. Bull. Amer. Phys. Soc., March Meeting 2002, U4.003.
Kondev, J. & Henley, C. L., Geometrical exponents of contour loops on random Gaussian surfaces. Phys. Rev. Lett., 74:23 (1995), 4580–4583.
Article
Google Scholar
Kondev, J., Henley, C. L. & Salinas, D. G., Nonlinear measures for characterizing rough surface morphologies. Phys. Rev. E, 61 (2000), 104–125.
Article
Google Scholar
Kosterlitz, J. M., The d-dimensional Coulomb gas and the roughening transition. J. Phys. C, 10:19 (1977), 3753–3760.
Article
Google Scholar
Kosterlitz, J. M. & Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6:7 (1973), 1181–1203.
Article
Google Scholar
Lawler, G. F., Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston, MA, 1991.
Google Scholar
— Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. Math. Phys. Electron. J., 4 (1998), Paper 5, 67 pp.
— An introduction to the stochastic Loewner evolution, in Random Walks and Geometry, pp. 261–293. de Gruyter, Berlin, 2004.
Google Scholar
— Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, 114. Amer. Math. Soc., Providence, RI, 2005.
Google Scholar
Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math., 187 (2001), 237–273.
MATH
Article
MathSciNet
Google Scholar
— Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 109–123.
MATH
Article
MathSciNet
Google Scholar
— Conformal restriction: the chordal case. J. Amer. Math. Soc., 16 (2003), 917–955.
MATH
Article
MathSciNet
Google Scholar
— Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32:1B (2004), 939–995.
MATH
Article
MathSciNet
Google Scholar
Mandelbrot, B., How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156 (1967), 636–638.
Article
Google Scholar
Naddaf, A. & Spencer, T., On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys., 183 (1997), 55–84.
MATH
Article
MathSciNet
Google Scholar
Nienhuis, B., Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett., 49:15 (1982), 1062–1065.
Article
MathSciNet
Google Scholar
— Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys., 34:5–6 (1984), 731–761.
MATH
Article
MathSciNet
Google Scholar
den Nijs, M., Extended scaling relations for the magnetic critical exponents of the Potts model. Phys. Rev. B, 27:3 (1983), 1674–1679.
Article
MathSciNet
Google Scholar
Pommerenke, C., Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften, 299. Springer, Berlin–Heidelberg, 1992.
Google Scholar
Revuz, D. & Yor, M., Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften, 293. Springer, Berlin–Heidelberg, 1999.
Google Scholar
Rohde, S. & Schramm, O., Basic properties of SLE. Ann. of Math., 161 (2005), 883–924.
MATH
MathSciNet
Article
Google Scholar
Saleur, H. & Duplantier, B., Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett., 58:22 (1987), 2325–2328.
Article
MathSciNet
Google Scholar
Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 (2000), 221–288.
MATH
Article
MathSciNet
Google Scholar
Schramm, O. & Sheffield, S., Harmonic explorer and its convergence to SLE4. Ann. Probab., 33:6 (2005), 2127–2148.
MATH
Article
MathSciNet
Google Scholar
Sheffield, S., Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139 (2007), 521–541.
MATH
Article
MathSciNet
Google Scholar
Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 239–244.
MATH
Google Scholar
Spencer, T., Scaling, the free field and statistical mechanics, in The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), Proc. Sympos. Pure Math., 60, pp. 373–389. Amer. Math. Soc., Providence, RI, 1997.
Google Scholar
Werner, W., Random planar curves and Schramm–Loewner evolutions, in Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, pp. 107–195. Springer, Berlin–Heidelberg, 2004.
Google Scholar