Skip to main content
Log in

Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation

  • Published:
Acta Mathematica

Abstract

We study the energy-critical focusing non-linear wave equation, with data in the energy space, in dimensions 3, 4 and 5. We prove that for Cauchy data of energy smaller than the one of the static solution W which gives the best constant in the Sobolev embedding, the following alternative holds. If the initial data has smaller norm in the homogeneous Sobolev space H 1 than the one of W, then we have global well-posedness and scattering. If the norm is larger than the one of W, then we have break-down in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonini, C. & Merle, F., Optimal bounds on positive blow-up solutions for a semilinear wave equation. Int. Math. Res. Notices, 2001 (2001), 1141–1167.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronszajn, N., Krzywicki, A. & Szarski, J., A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat., 4 (1962), 417–453.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., 55 (1976), 269–296.

    MATH  MathSciNet  Google Scholar 

  4. Bahouri, H. & Gérard, P., High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121 (1999), 131–175.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bahouri, H. & Shatah, J., Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 783–789.

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis, H. & Coron, J.-M., Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal., 89 (1985), 21–56.

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezis, H. & Marcus, M., Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 217–237 (1998).

    MATH  MathSciNet  Google Scholar 

  8. Christ, F. M. & Weinstein, M. I., Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal., 100 (1991), 87–109.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gérard, P., Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3 (1998), 213–233.

    Article  MATH  MathSciNet  Google Scholar 

  10. Giga, Y. & Kohn, R. V., Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math., 42 (1989), 845–884.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ginibre, J., Soffer, A. & Velo, G., The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal., 110 (1992), 96–130.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ginibre, J. & Velo, G., Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133 (1995), 50–68.

    Article  MATH  MathSciNet  Google Scholar 

  13. Grillakis, M. G., Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math., 132 (1990), 485–509.

    Article  MathSciNet  Google Scholar 

  14. — Regularity for the wave equation with a critical nonlinearity. Comm. Pure Appl. Math., 45 (1992), 749–774.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hörmander, L., The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Springer, Berlin–Heidelberg, 2007.

    Google Scholar 

  16. Jerison, D. & Kenig, C. E., Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. of Math., 121 (1985), 463–494.

    Article  MathSciNet  Google Scholar 

  17. Kapitanski, L., Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett., 1 (1994), 211–223.

    MATH  MathSciNet  Google Scholar 

  18. Kenig, C. E., Global well-posedness and scattering for the energy critical focusing non-linear Schrödinger and wave equations. Lecture notes for a mini-course given at “Analyse des équations aux derivées partielles”, Evian-les-Bains, 2007.

  19. Kenig, C. E. & Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166 (2006), 645–675.

    Article  MATH  MathSciNet  Google Scholar 

  20. — Scattering for \(\dot {H}^{1/2}\) bounded solutions to the cubic, defocusing NLS in 3 dimensions. To appear in Trans. Amer. Math. Soc.

  21. Kenig, C. E., Ponce, G. & Vega, L., Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46 (1993), 527–620.

    Article  MATH  MathSciNet  Google Scholar 

  22. Keraani, S., On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differential Equations, 175 (2001), 353–392.

    Article  MATH  MathSciNet  Google Scholar 

  23. Krieger, J. & Schlag, W., On the focusing critical semi-linear wave equation. Amer. J. Math., 129 (2007), 843–913.

    MATH  MathSciNet  Google Scholar 

  24. Levine, H. A., Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu_{tt}=-Au+{\cal F}(u)\). Trans. Amer. Math. Soc., 192 (1974), 1–21.

  25. Lindblad, H. & Sogge, C. D., On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal., 130 (1995), 357–426.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.

    MATH  Google Scholar 

  27. Merle, F., Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc., 14 (2001), 555–578.

    Article  MATH  MathSciNet  Google Scholar 

  28. Merle, F. & Vega, L., Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Internat. Math. Res. Notices, 8 (1998), 399–425.

    Article  MathSciNet  Google Scholar 

  29. Merle, F. & Zaag, H., A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann., 316 (2000), 103–137.

    Article  MATH  MathSciNet  Google Scholar 

  30. — Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math., 125 (2003), 1147–1164.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ogawa, T. & Tsutsumi, Y., Blow-up of H 1 solution for the nonlinear Schrödinger equation. J. Differential Equations, 92 (1991), 317–330.

    Article  MATH  MathSciNet  Google Scholar 

  32. Payne, L. E. & Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math., 22 (1975), 273–303.

    Article  MathSciNet  Google Scholar 

  33. Pecher, H., Nonlinear small data scattering for the wave and Klein–Gordon equation. Math. Z., 185 (1984), 261–270.

    Article  MATH  MathSciNet  Google Scholar 

  34. Sattinger, D. H., On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal., 30 (1968), 148–172.

    Article  MATH  MathSciNet  Google Scholar 

  35. Shatah, J. & Struwe, M., Regularity results for nonlinear wave equations. Ann. of Math., 138 (1993), 503–518.

    Article  MATH  MathSciNet  Google Scholar 

  36. — Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Notices, 1994 (1994), 303–309.

    Article  MATH  MathSciNet  Google Scholar 

  37. Geometric Wave Equations. Courant Lecture Notes in Mathematics, 2. New York University Courant Institute of Mathematical Sciences, New York, 1998.

    Google Scholar 

  38. Sogge, C. D., Oscillatory integrals and unique continuation for second order elliptic differential equations. J. Amer. Math. Soc., 2 (1989), 491–515.

    Article  MATH  MathSciNet  Google Scholar 

  39. Lectures on Nonlinear Wave Equations. Monographs in Analysis, II. International Press, Boston, MA, 1995.

    Google Scholar 

  40. Staffilani, G., On the generalized Korteweg–de Vries-type equations. Differential Integral Equations, 10 (1997), 777–796.

    MATH  MathSciNet  Google Scholar 

  41. Strauss, W. A., Nonlinear Wave Equations. CBMS Regional Conference Series in Mathematics, 73. Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  42. Struwe, M., Globally regular solutions to the u 5 Klein–Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), 495–513 (1989).

    MATH  MathSciNet  Google Scholar 

  43. Talenti, G., Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1976), 353–372.

    Article  MATH  MathSciNet  Google Scholar 

  44. Tao, T., Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions. Dyn. Partial Differ. Equ., 3 (2006), 93–110.

    MATH  MathSciNet  Google Scholar 

  45. Tao, T. & Visan, M., Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Differential Equations, (2005), No. 118, 28 pp.

  46. Taylor, M. E., Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, 81. Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  47. Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1968), 265–274.

    MATH  MathSciNet  Google Scholar 

  48. Wolff, T. H., Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Geom. Anal., 3 (1993), 621–650.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Kenig.

Additional information

The first author was supported in part by NSF and the second one in part by CNRS and by ANR ONDENONLIN. Part of this research was carried out during visits of the second author to the University of Chicago and I.H.E.S. and of the first author to Paris XIII.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenig, C.E., Merle, F. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math 201, 147–212 (2008). https://doi.org/10.1007/s11511-008-0031-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-008-0031-6

Keywords

Navigation