Skip to main content
Log in

Limit shapes and the complex Burgers equation

  • Published:
Acta Mathematica

Abstract

In this paper we study surfaces in R 3 that arise as limit shapes in random surface models related to planar dimers. These limit shapes are surface tension minimizers, that is, they minimize a functional of the form ∫σ(∇h) dx dy among all Lipschitz functions h taking given values on the boundary of the domain. The surface tension σ has singularities and is not strictly convex, which leads to formation of facets and edges in the limit shapes.

We find a change of variables that reduces the Euler–Lagrange equation for the variational problem to the complex inviscid Burgers equation (complex Hopf equation). The equation can thus be solved in terms of an arbitrary holomorphic function, which is somewhat similar in spirit to Weierstrass parametrization of minimal surfaces. We further show that for a natural dense set of boundary conditions, the holomorphic function in question is, in fact, algebraic. The tools of algebraic geometry can thus be brought in to study the minimizers and, especially, the formation of their singularities. This is illustrated by several explicitly computed examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanov, A. G., Hydrodynamics of correlated systems, in Applications of Random Matrices in Physics, NATO Sci. Ser. II Math. Phys. Chem., 221, pp. 139–161. Springer, Dordrecht, 2006.

    Google Scholar 

  2. Cohn, H., Kenyon, R. & Propp, J., A variational principle for domino tilings. J. Amer. Math. Soc., 14 (2001), 297–346.

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohn, H. & Pemantle, R., Private communication, 2001.

  4. Fournier, J.-C., Pavage des figures planes sans trous par des dominos: fondement graphique de l’algorithme de Thurston et parallélisation. C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 107–112.

    MATH  MathSciNet  Google Scholar 

  5. Fulton, W. & Pandharipande, R., Notes on stable maps and quantum cohomology, in Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, pp. 45–96. Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  6. Griffiths, P. & Harris, J., Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York, 1994.

    Google Scholar 

  7. Guionnet, A., First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Comm. Math. Phys., 244 (2004), 527–569.

    Article  MATH  MathSciNet  Google Scholar 

  8. Harris, J. & Morrison, I., Moduli of Curves. Graduate Texts in Mathematics, 187. Springer, New York, 1998.

    Google Scholar 

  9. Itenberg, I. & Viro, O., Patchworking algebraic curves disproves the Ragsdale conjecture. Math. Intelligencer, 18 (1996), 19–28.

    MATH  MathSciNet  Google Scholar 

  10. Kenyon, R., Height fluctuations in honeycomb dimers. Preprint, 2004. arXiv:math-ph/0405052.

  11. Kenyon, R. & Okounkov, A., Planar dimers and Harnack curves. Duke Math. J., 131 (2006), 499–524.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kenyon, R., Okounkov, A. & Sheffield, S., Dimers and amoebae. Ann. of Math., 163 (2006), 1019–1056.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kenyon, R., Okounkov, A. & Vafa, C., In preparation.

  14. Matytsin, A., On the large-N limit of the Itzykson–Zuber integral. Nuclear Phys. B, 411 (1994), 805–820.

    Article  MATH  MathSciNet  Google Scholar 

  15. Mikhalkin, G., Amoebas of algebraic varieties and tropical geometry, in Different Faces of Geometry, Int. Math. Ser. (N.Y.), 3, pp. 257–300. Kluwer/Plenum, New York, NY, 2004.

    Chapter  Google Scholar 

  16. Mikhalkin, G., Enumerative tropical algebraic geometry in R 2. J. Amer. Math. Soc., 18 (2005), 313–377.

    Article  MATH  MathSciNet  Google Scholar 

  17. Morrey, C. B., Jr., Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, 130. Springer, New York, 1966.

    Google Scholar 

  18. Okounkov, A., Random surfaces enumerating algebraic curves, in European Congress of Mathematics (Stockholm, 2004), pp. 751–768. Eur. Math. Soc., Zürich, 2005.

    Google Scholar 

  19. Okounkov, A., Reshetikhin, N. & Vafa, C., Quantum Calabi–Yau and classical crystals, in The Unity of Mathematics, Progr. Math., 244, pp. 597–618. Birkhäuser, Boston, MA, 2006.

    Google Scholar 

  20. Passare, M. & Rullgård, H., Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope. Duke Math. J., 121 (2004), 481–507.

    Article  MATH  MathSciNet  Google Scholar 

  21. Pokrovskii, V. & Talapov, A., The theory of two-dimensional incommensurate crystals. Zh. Èksper. Teoret. Fiz., 78 (1980), 269–295 (Russian). English translation in Soviet Phys. JETP, 51 (1980), 134–148.

    Google Scholar 

  22. Speyer, D. E., Horn’s problem, Vinnikov curves, and the hive cone. Duke Math. J., 127 (2005), 395–427.

    Article  MATH  MathSciNet  Google Scholar 

  23. Vinnikov, V., Selfadjoint determinantal representations of real plane curves. Math. Ann., 296 (1993), 453–479.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kenyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyon, R., Okounkov, A. Limit shapes and the complex Burgers equation. Acta Math 199, 263–302 (2007). https://doi.org/10.1007/s11511-007-0021-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-007-0021-0

Keywords

Navigation