Skip to main content
Log in

Radiative transitions in metallic nanoclusters

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this article, a new theoretical approach to studying light-scattering characteristics of nanosized objects based on the solution to the Thomas-Fermi equation and quasi-classical approximation is considered. It is shown that the distribution of valence electrons in the volume of metallic clusters exhibits a specific structure of “spatial zones.” With the aid of quasi-classical wave functions, expressions for the appropriate dipole moments of the transitions between the ground and excited states are obtained; the behavior of the spectrum of gold clusters depending on their sizes is studied; a comparison with existing experimental data is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, et al., “Nanofabricated Media with Negative Permeability at Visible Frequencies,” Nature 438, 335–339 (2006).

    Article  Google Scholar 

  2. V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, et al., “Measurement of Mean Size and Evaluation of Polydispersity of Gold Nanoparticles from Spectra of Optical Absorption and Scattering,” Opt. Spektrosk. 96 (1)}, 139–148 (2004) [Opt. Spectrosc. 96 (1), 128–135 (2004)].

    Article  Google Scholar 

  3. A. S. Shalin, “Electrodynamical Response of Colloid Ensemble Taking into Account the Influence of Distant Nanoparticles,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 3–11 (2006).

    Google Scholar 

  4. S. A. Maier, M. L. Brongersma, P. G. Kik, et al., “Observation of Near-Field Coupling in Nanoparticle Chains Using Far-Field Polarization Spectroscopy,” Phys. Rev. B: Condens. Matter 65, 193 408 (2002).

    Article  Google Scholar 

  5. A. S. Shalin, “Light Scattering by Nanosize Systems with Different Space Organization,” Zh. Prikl. Spektrosk. 73 (5), 641–646 (2006).

    Google Scholar 

  6. W. Rechberger, A. Hohenau, A. Leitner, et al., “Optical Properties of Two Interacting Gold Nanoparticles,” Opt. Commun. 220, 137–141(2003)

    Article  Google Scholar 

  7. J. Zheng, C. Zhang, and R. M. Dickson, “Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots,” Phys. Rev. Lett. 93, 077402} (2004).

  8. J. I. Gonzales, T. H. Lee, M. Barnes, et al., “Quantum Mechanical Single- Gold-Nanocluster Electroluminescent Light Source at Room Temperature,” Phys. Rev. Lett. 93, 147402 (2004).

    Article  Google Scholar 

  9. V. P. Krainov and M. B. Smirnov, “The Evolution of Large Clusters under the Action of Ultrashort Superintense Laser Pulses,” Usp. Fiz. Nauk 170 (9), 969–991 (2000) [Phys.-Usp. 43 (9), 901–920 (2000)].

    Article  Google Scholar 

  10. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  11. T. V. Teperik, V. V. Popov and F. J. Garcia de Abajo “Total Resonant Absorption of Light by Plasmons on the Nanoporous Surface of a Metal,” Fiz. Tverd. Tela 47 (1), 173–175 (2005), [Solid St. Phys. 47 (1), 178–182 (2005)].

    Google Scholar 

  12. A. A. Ovchinnikov, Yu. I. Dakhnovskii, V. D. Krevchik, et al., Principles of Controlled Modulation of LowDimensional Structures (Izd. UNTsDO, Moscow, 2003) [in Russian].

    Google Scholar 

  13. L. M. K. Vandersypen, J. M. Elzerman, R. N. Schouten, et al., “Real-Time Detection of Single-Electron Tunneling Using a Quantum Point Contact,” Appl. Phys. Lett. 85, 4394–4396 (2004).

    Article  Google Scholar 

  14. B. M. Smirnov and Kh. Vaidele, “The Mechanisms of Radiative Transitions in Metal Clusters,” Zh. Eksp. Teor. Fiz. 116, (6), 1903–1912 (1999).

    Google Scholar 

  15. O. N. Gadomskii and A. S. Shalin, “Optical Near-Field Resonances in the System of Interacting Nanoparticles,” Fiz. Met. Metalloved. 101(5), 425–433 (2006) [Phys. Met. Metallogr. 101 (5), 462–471 (2006)].

    Article  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Pergamon Press, Oxford, 1960).

    Google Scholar 

  17. O. N. Gadomskii and A. S. Shalin, “Electron States in Metal Clusters,” Zh. Eksp. Teor. Fiz. 131 (1), 5–13 (2007) [J. Exp. Theor. Phys. 104 (1), 1–7 (2007)].

    Google Scholar 

  18. A. Domps, P. G. Reinhard, and E. Suraud, “Geometrical and Quantal Fragmentation of Optical Response in Nalg,” Eur. Phys. J. D 2, 191–199 (1998).

    Article  Google Scholar 

  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 1983).

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1973).

    Google Scholar 

  21. A. M. Bystrov and V B. Gil'denburg, “Dipole Resonances of an Ionized Cluster,” Zh. Eksp. Teor. Fiz. 127, 478–490 (2005) [J. Exp. Theor. Phys. 100 (2), 428–439 (2005)].

    Google Scholar 

  22. O. N. Gadomskii and Yu. Ya. Kharitonov, “Optical NearField Resonances in a Metastructural Layer of Metallic Spherical Nanoparticles,” Fiz. Met. Metalloved. 102 (5), 494–506 (2006) [Phys. Met. Metallogr. 102 (5), 462–473 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Shalin, 2008, published in Fizika Metallov i Metallovedenie, 2008, Vol. 105, No. 2, pp. 137–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalin, A.S. Radiative transitions in metallic nanoclusters. Phys. Metals Metallogr. 105, 126–133 (2008). https://doi.org/10.1007/s11508-008-2004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11508-008-2004-6

PACS numbers

Navigation